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Abstract
Background  Stroke causes long-term disabilities, highlighting the need for innovative rehabilitation strategies for 
reducing residual impairments. This study explored the potential of functional near-infrared spectroscopy (fNIRS) for 
monitoring cortical activation during rehabilitation using digital therapeutics.

Methods  This cross-sectional study included 18 patients with chronic stroke, of whom 13 were men. The mean age 
of the patients was 67.0 ± 7.1 years. Motor function was evaluated through various tests, including the Fugl–Meyer 
assessment for upper extremity (FMA-UE), grip and pinch strength test, and box and block test. All the patients 
completed the digital rehabilitation program (MotoCog®, Cybermedic Co., Ltd., Republic of Korea) while being 
monitored using fNIRS (NIRScout®, NIRx Inc., Germany). Statistical parametric mapping (SPM) was employed to analyze 
the cortical activation patterns from the fNIRS data. Furthermore, the K-nearest neighbor (K-NN) algorithm was used 
to analyze task performance and fNIRS data to classify the severity of motor impairment.

Results  The participants showed diverse task performances in the digital rehabilitation program, demonstrating 
distinct patterns of cortical activation that correlated with different motor function levels. Significant activation was 
observed in the ipsilesional primary motor area (M1), primary somatosensory area (S1), and contralateral prefrontal 
cortex. The activation patterns varied according to the FMA-UE scores. Positive correlations were observed between 
the FMA-UE scores and SPM t-values in the ipsilesional M1, whereas negative correlations were observed in the 
ipsilesional S1, frontal lobe, and parietal lobe. The incorporation of cortical hemodynamic responses with task scores 
in a digital rehabilitation program substantially improves the accuracy of the K-NN algorithm in classifying upper limb 
functional levels in patients with stroke. The accuracy for tasks, such as the gas stove-operation task, increased from 
44.4% using only task scores to 83.3% when these scores were combined with oxy-Hb t-values from the ipsilesional 
M1.

Conclusions  The results advocated the development of tailored digital rehabilitation strategies by combining the 
behavioral and cerebral hemodynamic data of patients with stroke. This approach aligns with the evolving paradigm 
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Background
Stroke, which has become increasingly prevalent with the 
global aging population, poses a significant public health 
challenge, leading to long-term disabilities and substan-
tial burden on healthcare systems [1]. This condition 
results from cerebral vascular events that cause brain 
damage, which manifests in various impairments rang-
ing from motor and cognitive to emotional and linguistic 
difficulties, substantially affecting individuals’ quality of 
life [2]. Effective rehabilitation is essential for improving 
functional recovery, reducing disabilities, and enabling 
the reintegration of stroke survivors into daily life, thus 
alleviating the socioeconomic burdens on their families 
and healthcare systems [3].

To create more engaging and interactive rehabilitation 
experiences, recent advancements in digital technology 
have introduced innovative approaches to rehabilitation, 
employing wearable technology, gamification principles, 
and virtual reality (VR) systems [4, 5]. These digital reha-
bilitation programs leverage advanced sensors and data 
analytics for precise patient assessment and personal-
ized treatment plans [6]. Furthermore, artificial intelli-
gence algorithms process data obtained through digital 
platforms, optimizing therapeutic outcomes by tailoring 
rehabilitation programs to individual needs and enhanc-
ing treatment effectiveness and personalization [7, 8].

Understanding neuroplasticity, which refers to the 
brain’s ability to create new neural connections, is fun-
damental for the development of effective neurore-
habilitation strategies [9, 10]. This concept underpins 
treatments aimed at leveraging neural plasticity for 
recovery, supported by functional brain imaging research 
that highlights the brain’s capacity for reorganization 
and adaptation following a stroke [10]. Despite the rec-
ognized benefits of digital technologies in rehabilitation, 
the detailed relationship between cortical activation and 
rehabilitation outcomes remains unclear. Notwithstand-
ing its limitations, functional near-infrared spectroscopy 
(fNIRS) offers advantages such as low cost, portability, 
and resilience to motion artifacts, making it a promis-
ing tool for understanding and using brain activation and 
plasticity in digital rehabilitation [11, 12].

This preliminary study was conducted to investi-
gate cortical activation during stroke rehabilitation, as 
indicated by cerebral hemodynamic signals measured 
through fNIRS during digital rehabilitation. The first 
objective was to determine the characteristics of brain 
activation captured by cerebral hemodynamic response 

signals during digital rehabilitation. The second objec-
tive was to determine whether machine learning algo-
rithms can effectively classify brain signals and elucidate 
patients’ functional status. The third objective was to 
improve our understanding of the intricate relation-
ship between neurophysiological changes and functional 
motor performance in digital rehabilitation.

Methods
Participants
The study enrolled patients with chronic stroke aged 
19–80 years who had experienced a stroke at least 6 
months before enrolment. Eligible participants had uni-
lateral subcortical lesions and mild-to-moderate upper 
extremity impairment, as indicated by Fugl–Meyer 
assessment for upper extremity (FMA-UE) scores of 
25–57 [13, 14], and were capable of grasping and releas-
ing objects. To ensure sufficient cognitive function for 
inclusion, a score of at least 24 in the Korean version of 
the Mini-Mental State Examination was required [15]. 
Patients with neurological disorders other than stroke, 
major psychiatric disorders (e.g., schizophrenia, bipolar 
disorder, dementia, or severe spatial/temporal neglect 
or apraxia), and musculoskeletal disorders or conditions 
preventing the safe use of medical devices (e.g., implant-
able electronic devices, cardiac diseases, pregnancy, skin 
diseases, open wounds, high fever, or infectious diseases) 
were excluded.

Our cross-sectional study aimed to observe differences 
in brain activation during upper limb motor tasks, focus-
ing on cerebral activity patterns rather than statistically 
proving clinical efficacy. To determine the sample size, we 
referenced previous studies that analyzed brain activa-
tion in similar tasks and research on the Fugl–FMA-UE 
scores, which was a critical motor function indicator for 
our target stroke patient population. Specifically, a study 
by Kim, H.G. et al. (2022) [16], which used upper limb 
FMA scores and conducted a two-sided paired t-test, 
indicated a sample size of 20 participants to achieve an 
effect size of 1.308, a significance level (α) of 0.05, and a 
power (1-β) of 85%, calculated using G*Power version 
3.1 [17]. Further supporting this, studies that employed 
near-infrared spectroscopy for regional brain activa-
tion analysis during upper limb motor tasks, including 1 
with 20 stroke patients [18] and another with 20 healthy 
adults engaged in video game-based tasks, also yielded 
satisfactory results with 20 participants [19]. Based on 

of personalized rehabilitation in stroke recovery, highlighting the need for further extensive research to optimize 
rehabilitation outcomes.

Keywords  Stroke, Functional near-infrared spectroscopy, Cerebral hemodynamic response, Digital rehabilitation, 
Upper limb motor function



Page 3 of 12Kim et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:115 

these precedents, our study set out to recruit a total of 20 
participants.

The final analysis included 18 (13 men; mean age, 
67.0 ± 7.1 years) of the 21 participants who initially con-
sented after 1 withdrew consent and 2 were excluded due 
to missing data (Supplementary Fig. 1). The participants’ 
demographics are summarized in Table 1.

Experimental protocol
This cross-sectional study was conducted to identify the 
characteristics of cerebral hemodynamic response dur-
ing a digital rehabilitation program. The patients visited 
the hospital once to participate in the research. They 
underwent a series of upper limb motor function assess-
ments before starting the digital rehabilitation program. 
These assessments included the FMA-UE, grip and pinch 
strength test, box and block test, nine-hole pegboard 
test (9HPT), Jebsen–Taylor hand function test (JTHFT), 
and motor evoked potential. All the patients performed 
the digital rehabilitation program for 25 min using their 
affected hand, during which their cerebral hemodynamic 
responses were monitored through fNIRS (Fig. 1D). The 
program started with a 60-s baseline in an eyes-closed 

resting state, followed by four tasks in a box-car block 
design. Each task block, lasting 4  min, comprised four 
individual tasks, each performed for 1  min. These tasks 
were randomized in order. Each task block was fol-
lowed by a 1-min rest period and was repeated five times 
(Fig. 1A).

This study was conducted in accordance with the prin-
ciples of the Declaration of Helsinki and approved by the 
Institutional Review Board of Samsung Medical Center, 
Republic of Korea (IRB No. SMC 2022-10-117).

Multimodal digital rehabilitation system
This study used MotoCog® (Cybermedic Co., Ltd., Repub-
lic of Korea), a multimodal digital rehabilitation system 
designed to improve upper limb functions related to 
activities of daily living [20]. This system includes tools 
that mimic everyday items such as circular, O-shaped, 
and L-shaped handles, an air tube, a steering wheel, a gas 
range knob, and a touch screen. Each tool was equipped 
with sensors for motion detection and motor resistance 
assessment, facilitating haptic-based training in daily 
activities. The system encompasses 10 hand function 
training tasks. This study selected the following four 
tasks as representative of typical hand functions (Fig. 1B):

Gas stove operation
Participants hold a gas range knob and simulate turning 
on a gas stove as per the screen scenario through hand 
supination and pronation movements. The difficulty 
increases with the resistance and rotation angle.

Watering the garden
Participants hold an air bulb and mimic watering plants. 
It involves hand grasping and releasing motions. The 
force required to squeeze the bulb and the holding dura-
tion increase with increasing difficulty.

Hitting the target

Participants manipulate the touchpad on the device 
to align with the screen scenarios. Finger button-
pressing actions are performed, with the number 
and speed of targets increasing as the difficulty 
intensifies.

Turning off the lights

Participants reach out and touch circles on the 
screen to turn off the lights. This task involves reach-
ing and touching motions, and an increasing num-
ber of lights and additional untouchable colored 
lights appear at higher difficulties.

Table 1  Demographic characteristics of the participants
Characteristics Value (n = 18)
Age (years) 67.0 ± 7.1 (51, 80)
Sex (male/female) 13/5
Stroke type (infarction/hemorrhage) 11/7
Lesion side (left/right) 12/6
Duration (months) 68.4 ± 54.1 (14, 206)
FMA upper extremity (score) 45.9 ± 7.8 (32, 57)
Hand grip strength test (kg) 6.0 ± 6.6 (0, 22)
Grip and pinch strength test (kg) 2.3 ± 1.4 (0, 5.5)
Box and block test (ea) 30.6 ± 17.2 (0, 54)
Nine-hole pegboard test (sec) 76.8 ± 79.5 (0, 298)
JTHFT Writing (s) 65.8 ± 30.7 (19.2, 120)

Card turning (s) 31.8 ± 35.8 (1.6, 120)
Picking up small 
objects (s)

46.5 ± 39.1 (9.3, 120)

Feeding (s) 30.4 ± 34.2 (8.9, 120)
Checkers (s) 22.2 ± 36.6 (3.2, 120)
Lift light (s) 32.8 ± 39.1 (5.1, 120)
Light heavy (s) 33.0 ± 40.9 (5.1, 120)

MMSE-K 29.1 ± 1.3 [26, 30]
MEP rMT of the affected hemi-

sphere (%)
58.8 ± 13.9 (35, 80)

Amplitude of the affected 
hemisphere (mV)

0.33 ± 0.33 (0.05, 
1.31)

Latency of the affected 
hemisphere (ms)

25.3 ± 3.2 (19.9, 30.8)

Values are expressed as mean ± SD (min, max). FMA, Fugl–Meyer assessment; 
JTHFT, Jebsen–Taylor hand function test; MEP, motor evoked potential; 
MMSE-K, Korean version of the Mini-Mental State Examination; rMT, resting 
motor threshold; SD, standard deviation. In the JTHFT, uncompleted tasks 
were marked as 120 s. Two data points were missing for the MEP of the affected 
hemisphere
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The participants’ task performance was recorded as 
scores. The tasks have adjustable difficulty levels (1–5). 
In this study, all tasks started at level 1 and progressed 
to level 5 based on the participant’s score. The difficulty 
adjustment criteria were as follows: decreased level 
in scores < 30, maintained level in scores 30–70, and 
increased level in scores > 70.

fNIRS measurement
The regional cerebral hemodynamic response during the 
digital rehabilitation program was measured through 
fNIRS. In this study, a continuous-wave fNIRS measure-
ment system (NIRScout®, NIRx Medical Technology, 
Berlin, Germany) on a platform compatible with multi-
modal inputs was utilized. The hemodynamic response 
signals were obtained as optical changes in a continuous 
waveform. The system utilized two wavelengths (760 and 
850  nm), with a sampling rate of 10.25  Hz. The fNIRS 
optodes, including 24 LED light sources and 24 detec-
tors, formed 81 source–detector channels. These chan-
nels were used to monitor cerebral hemodynamics across 
nearly the entire cortical area (Fig.  1C), including the 
frontal, motor, parietal, temporal, and occipital cortices. 
The precise locations of each channel can be confirmed 

through Supplementary Table 1. Montreal Neurologic 
Institute coordinates and Brodmann areas were deter-
mined by referencing information based on the existing 
10/20 system for each channel [21]. The optodes were 
positioned according to the international 10/20 system 
with a channel distance (source to detector) of 3.0  cm. 
The cranial vertex (Cz), which was located beneath the 
first source, served as a marker for the consistent place-
ment of the optodes. After locating the Cz position on 
the participant’s head, the fNIRS head cap was positioned 
accordingly.

The NIRStar 15.2 software (NIRx Medical Technolo-
gies) was used to capture signals, record raw fNIRS data, 
and obtain signal quality indicators for measurement 
channels following hardware calibration. The channels 
were evaluated for signal quality, and those with poor 
quality were excluded based on the following criteria: 
First, channels with a gain > 7 (inadequate light detection) 
were rejected. This gain was determined by the software 
during the calibration performed before each experi-
ment. Gain values < 7, defined in the measurement soft-
ware, corresponded to optical signals within the range of 
0.09–1.4 V and noise levels < 2.5% [22]. In cases with poor 
signal quality during calibration, the contact between the 

Fig. 1  Study design. (A) Experimental paradigm. The paradigm consisted of four tasks in a box-car block design, with each task block lasting 4 min fol-
lowed by a 1-min rest block. This sequence was repeated five times. The tasks varied and were randomized. (B) Digital rehabilitation program tasks. The 
upper-left corner of the figure shows the tools used in each task. (C) fNIRS topographical map. Red circles indicate 24 sources; blue circles, 24 detectors; 
and gray lines, 81 channels. (D) Experiment photo. A participant is performing the digital rehabilitation program and wearing an fNIRS device to measure 
their cerebral hemodynamic responses
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scalp and the corresponding optodes was adjusted until 
the overall signal quality reached an acceptable level.

Data processing and analysis of fNIRS
Cerebral hemodynamic responses were preprocessed 
and analyzed using the nirsLAB® software (v.2019.04; 
NIRx Medical Technologies). Discontinuities and spike 
artifacts in the raw signals from 81 channels were deter-
mined and replaced with the closest matching signals. 
The criterion for channel quality evaluation was based on 
a gain threshold of 8 and a coefficient of variation (CV) 
threshold of 7.5 [23]. In addition, instances of spikes and 
discontinuities were identified and then replaced with the 
nearest signals to enhance signal clarity [24]. To elimi-
nate the baseline noise and filter out potential respiratory 
(about 0.3 Hz) and heart rate (about 1.0–1.6 Hz) signals, 
raw data were initially band-pass-filtered from 0.01 to 
0.2 Hz [25]. Both oxyhemoglobin (oxy-Hb) and deoxyhe-
moglobin signals were captured; however, only the oxy-
Hb concentration was included in the analysis owing to 
its higher signal-to-noise ratio [26]. The oxy-Hb concen-
tration for each of the 81 channels was calculated from 
the preprocessed filtered data using the modified Beer–
Lambert law [27].

Statistical parametric mapping (SPM) analysis was con-
ducted to create a cortical activation map of the cerebral 
hemodynamic responses to oxy-Hb. A general linear 
model with a canonical hemodynamic response function 
was used in the SPM analysis to model the hypothesized 
oxy-Hb response and to test for significant cortical acti-
vation during the task block compared with the resting 
block [28]. Each task was executed for 1 min, with four 
distinct tasks consecutively executed in each block. To 
ensure statistical robustness and minimize potential car-
ryover effects, the sequence of the blocks was repeated 
five times, with the order of the tasks within each block 
randomized in a balanced manner. In the SPM analysis, 
each 1-min task block was processed to separate and 
capture unique brain signals associated with each spe-
cific task through five repeated iterations. Subsequently, 
these signals were compared with the data from the rest-
ing blocks and then compared with the signals obtained 
during the 1-min resting blocks. Statistical analysis began 
with the calculation of individual-level beta-values from 
each participant’s fNIRS data, which were then used 
to derive oxy-Hb t-values for each participant, iden-
tifying specific cortical activation patterns within the 
participants. These individual oxy-Hb t-values were sub-
sequently used in a group-level analysis to determine 
significantly activated channels (P < 0.05, not corrected) 
[29]. Furthermore, to determine regions with significant 
differences in oxy-Hb concentration, t-statistic maps 
derived from group analysis were plotted onto a conven-
tional cortex template. All the participants were assumed 

to have lesions in the left hemisphere. Thus, the channels 
were flipped from left to right for patients with lesions in 
the right hemisphere. Individual-level t-values for all 81 
channels were extracted, allowing for statistical analysis 
of the t-values for each channel.

Statistical analysis
IBM SPSS Statistics for Windows version 20.0 (IBM 
Corp., Armonk, NY, USA) was used for statistical anal-
ysis. The Shapiro–Wilk test and Levene’s test were 
employed to evaluate data normality and the homoge-
neity of variance, respectively. Furthermore, Pearson’s 
correlation coefficients were utilized to explore the cor-
relations among motor function scores, digital reha-
bilitation task scores, and oxy-Hb t-values from the 
fNIRS measurements. A P-value of 0.05 was used for all 
analyses.

In addition, the K-nearest neighbors (K-NN) algorithm 
was employed to classify FMA-UE severity in patients 
with stroke using the task performance scores and 
t-values in oxy-Hb as dependent variables, with FMA-
UE severity as the predictor variable. The validity of the 
model was confirmed using a threefold cross-validation 
method, in which a sample was randomly divided into 
three subsets. One subset was used as a validation set 
in each validation cycle, and the remaining subsets were 
used to train the model. This cycle was repeated with 
each subset used as a validation set once. The average 
misclassification error, specificity, sensitivity, positive and 
negative predictive values, and overall accuracy were cal-
culated to evaluate the model’s performance.

Results
Task performance results in the digital rehabilitation 
program
The average performance scores and difficulty levels 
of each task in the digital rehabilitation program var-
ied among the participants (Fig.  2). In the gas-stove-
operation task, which required hand supination and 
pronation movements, all the participants reached the 
maximum difficulty level of 5, achieving an average score 
of 99.9 ± 0.2 (Supplementary Table 2). In the watering-
the-garden task, which involved finger grasping and 
releasing motions, the average maximum difficulty level 
was 3.8 ± 1.4, with an average score of 78.6 ± 27.1. In the 
hitting-the-target task, which involved finger-tapping 
movements, the average maximum difficulty level was 
1.2 ± 0.5, with an average score of 34.0 ± 20.9. Finally, in 
the turning-off-the-light task, the average maximum 
difficulty level was 4.5 ± 1.2, with an average score of 
85.9 ± 18.1.

Table  2 shows the correlation between upper limb 
motor function and the average scores of each task in the 
digital rehabilitation program. The average correlation 
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coefficient (r) was 0.21, which indicated no significant 
correlation with upper limb and hand function for the 
gas stove-operation task. Contrarily, the watering-the-
garden task exhibited a strong significant correlation 
with all upper limb function assessment scores, except 
for 9HPT, which had an average correlation coefficient 
of 0.70 (P < 0.05). The hitting-the-target and turning-off-
the-light tasks showed moderate statistical correlations 

with all upper limb function tasks (excluding 9HPT 
and the grip and pinch strength test), with average cor-
relation coefficients of 0.54 (P < 0.05) and 0.61 (P < 0.05), 
respectively.

Table 2  Correlation between the upper limb motor function and the average score for each task
Characteristics Gas stove operation Watering the garden Hitting the target Turning off the lights
FMA upper extremity (score) −0.36 0.78** 0.56* 0.71**

Hand grip strength test (kg) −0.25 0.62** 0.66** 0.48*

Grip and pinch strength test (kg) −0.24 0.63** 0.37 0.37
Box and block test (ea) −0.21 0.83** 0.60** 0.75**

Nine-hole pegboard test (s) 0.17 −0.08 −0.21 −0.20
JTHFT Writing (s) 0.31 −0.66** −0.58* −0.69**

Card turning (s) 0.17 −0.83** −0.58* −0.59**

Picking up small objects (s) 0.23 −0.80** −0.62** −0.71**

Feeding (s) 0.15 −0.80** −0.49* −0.67**

Checkers (s) 0.13 −0.83** −0.50* −0.67**

Lift light (s) 0.17 −0.79** −0.62** −0.69**

Light heavy (s) 0.17 −0.79** −0.66** −0.81**

Values represent correlation coefficient (r), bold, and *P < 0.05, **P < 0.01. FMA, Fugl–Meyer assessment; JTHFT, Jebsen–Taylor hand function test; ea, each

Fig. 2  Average score and difficulty level of each task in the digital rehabilitation program. Each task started at level 1 difficulty and progressed up to level 
5, with the difficulty increasing after each of the five repeated blocks based on the score. The difficulty level decreased if the score was < 30, remained the 
same if the score was 30–70, and increased if the score was > 70
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Cortical activation pattern during the digital rehabilitation 
program
Figure  3A illustrates the grand average cortical activa-
tion pattern obtained from 18 participants with chronic 
stroke executing tasks in the digital rehabilitation pro-
gram compared with the resting state. The channels 
and colors represent the statistically significant t-values 
obtained from the SPM analysis. Significant activation 
was observed in the ipsilesional primary motor cortex 
(M1), primary somatosensory cortex (S1), and contrale-
sional prefrontal cortex (PFC) in all tasks compared with 
the resting state.

A subgroup analysis was conducted using FMA-UE 
severity to explore hemodynamic brain activation char-
acteristics based on functional levels in patients with 
stroke [30]. The analysis included 8 participants with 
notable to full upper limb function (scores of 48 points 
and above) and 10 participants with limited function 

(scores below 48 points). The group with notable to full 
upper limb function demonstrated no statistically signifi-
cant cortical activation areas in the digital rehabilitation 
tasks (Fig.  3B). Conversely, increased use of the ipsile-
sional M1, supplementary motor areas (SMAs), bilateral 
posterior parietal cortices (PPC), and bilateral PFC was 
observed during the digital rehabilitation program in the 
group with limited function.

Association between upper limb motor function, task 
performance, and cortical activation
Supplementary Fig. 2 shows the correlation map between 
FMA-UE scores, digital task performance scores, and 
oxy-Hb concentration t-values during the digital reha-
bilitation program. Red denotes a positive correlation; 
blue, a negative correlation; and bold markings, statistical 
significance.

Fig. 3  Average cortical activation patterns during the digital rehabilitation program. (A) Grand average cortical activation patterns for each task. The 
significant t-values from the statistical parametric mapping (SPM) analysis are represented for each channel (P < 0.05). (B) Subgroup analysis of cortical 
activation patterns based on the Fugl–Meyer assessment for upper extremity (FMA-UE) severity. M1, primary motor cortex; PFC, prefrontal cortex; PPC, 
posterior parietal cortex; SMA, supplementary motor area; S1, primary somatosensory cortex
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Ipsilesional M1 generally exhibited a positive correla-
tion across all tasks, whereas contralesional M1, SMA, 
S1, and PFC showed negative correlations in the relation-
ship between FMA-UE and cortical activation. Notably, 
channels such as Cz-C1 consistently demonstrated sta-
tistically significant positive correlations in patients with 
left lesions, whereas channels such as F1-AF3, Fz-AFz, 
FC3-FC5, and CPz-CP1 showed significant negative cor-
relations. In particular, a significant positive correlation 
was observed between the FMA-UE and the SPM t-val-
ues of oxy-Hb of the ipsilesional M1 (Cz-C1 channel) 
during the gas stove-operation and watering-the-garden 
tasks (Fig.  4A). However, the oxy-Hb t-values in ipsile-
sional S1 (CPz-CP1) showed a significant negative corre-
lation with the FMA-UE scores in all tasks, except for the 
watering-the-garden task. The watering-the-garden task 
exhibited a trend toward a negative correlation, although 
not statistically significant (P = 0.12).

Contrarily, when analyzing the correlation between 
digital rehabilitation performance scores and cortical 
activation, tasks such as watering the garden, hitting the 
target, and turning off the lights, which showed moder-
ate-to-strong correlations between function and scores 
as shown in Sect. 3.1, mirrored these outcomes in terms 
of correlation with upper limb function (Supplementary 
Fig. 2). However, the gas stove-operation task, which did 
not show correlation with function, exhibited a different 
pattern and did not show any significant correlation with 
cortical activation. In particular, the t-values of ipsile-
sional M1 demonstrated a significant correlation with 
the FMA-UE (r = 0.53, P = 0.02) and task performance 
scores (r = 0.67, P < 0.01) during the watering-the-garden 
task. Conversely, the t-values of ipsilesional M1 were only 

significantly correlated with FMA-UE (r = 0.48, P = 0.06) 
and demonstrated no correlation with task performance 
scores (r = 0.24, P = 0.33) in the gas stove-operation task 
(Fig. 4B).

Classification of motor function using task scores and 
cortical activation
A K-NN classification analysis was conducted to deter-
mine whether cortical activation measured during the 
digital rehabilitation program facilitated the evaluation 
of participants’ functional levels. The predictor variable 
was FMA-UE severity, which was categorized as either 
“notable to full” or “limited.” The task scores and oxy-Hb 
t-values in the ipsilesional M1 (Cz-C1 channel) were used 
as dependent variables. This study compared the model 
performance when using only task scores versus both 
task scores and t-values as dependent variables. Supple-
mentary Fig. 3 shows the confusion matrix for the clas-
sification results, and Table 3 presents comparison of the 
models used in each task. The results indicate an increase 
in the classification accuracy for all tasks when oxy-Hb 
t-values were included alongside task scores. In particu-
lar, the accuracy in the gas stove-operation task increased 
from 44.4% using only task scores to 83.3% when cortical 
activation was incorporated.

Discussion
This study highlights the utility of fNIRS for monitor-
ing cortical activation in patients with stroke undergoing 
digital rehabilitation, demonstrating that cortical activa-
tion patterns are correlated with motor performance. 
Our results indicate that distinct patterns of cortical 
activation are correlated with different levels of motor 

Fig. 4  Association between upper limb motor function, task performance, and cortical activation. (A) Correlation between the FMA-UE scores and 
oxy-Hb t-values in ipsilesional M1 (Cz-C1 channel) and ipsilesional S1 (CPz-CP1 channel) in each task. (B) Correlation between the oxy-Hb t-values in 
ipsilesional M1 (Cz-C1 channel) with the FMA-UE scores and task performance scores during the task
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performance. Notably, significant activations in ipsile-
sional M1, S1, and contralateral PFC were associated 
with different motor functions, as indicated by the FMA-
UE scores. Our findings indicate that ipsilesional M1 and 
motor performance were positively correlated whereas 
S1 and other regions were negatively correlated. The use 
of the K-NN algorithm, incorporating task performance 
scores with fNIRS data such as oxy-Hb t-values from the 
ipsilesional M1, improved the classification accuracy of 
functional status from 44.4 to 83.3% for specific digital 
rehabilitation tasks.

This study elucidated the effect of digital rehabilita-
tion on cortical activation in patients with stroke, as 
measured through fNIRS, highlighting increased activ-
ity in key brain areas such as the ipsilesional M1, S1, and 
contralateral PFC when executing tasks versus the rest-
ing state. The activation of these areas, particularly the 
ipsilesional hemisphere, is essential for motor recovery 
and neurostimulation [31], highlighting the importance 
of targeting the ipsilesional M1 and addressing the role 
of S1 following a stroke [32, 33]. Evidence suggests that 
both motor and somatosensory areas are important for 
rehabilitation, with interventions such as digital systems 
and VR-based rehabilitation promoting functional recov-
ery and neural plasticity by stimulating the sensorimo-
tor cortex [34, 35]. This study supports the efficacy of 
digital rehabilitation in activating not only motor regions 
but also areas important for motor planning, reinforc-
ing the therapeutic potential of such programs in stroke 
rehabilitation.

This study also demonstrated the compensatory role of 
contralesional PFC in motor rehabilitation, which sub-
stitutes or strengthens the functions of stroke-affected 
regions [36, 37]. The ability of contralesional PFC to 
form new neural pathways and assume roles for damaged 
areas highlights a key adaptation mechanism in post-
stroke recovery [38, 39]. Activation of contralesional PFC 

supports the reorganization of neural networks during 
rehabilitation, highlighting its importance in functional 
recovery, particularly for the rehabilitation of the para-
lyzed upper limb. This finding significantly contributes to 
our understanding of the compensatory potential of the 
contralesional hemisphere in stroke recovery.

This study identified various brain activation patterns 
corresponding to the severity of motor impairment, as 
indicated by the FMA-UE scores, demonstrating the 
differential engagement of brain regions during reha-
bilitation tasks. Unlike those in healthy individuals, the 
movements of paralyzed hands in patients with stroke 
stimulate increased neural activity across the hemi-
spheres, with marked hyperactivity in the SMA and 
intact motor cortical areas near lesions [40]. This hyper-
activity, particularly in the SMA and PPC among patients 
with severe motor impairments, indicates a compensa-
tory response to upper limb dysfunction [41]. In light of 
the observed hyperactivity in the PPC among patients 
with severe motor impairments, the role of the parietal 
lobe as a critical hub for executive functions and its asso-
ciation with executive dysfunction and cardiovascular 
risk factors in patients with stroke becomes particularly 
relevant [42, 43]. This hyperactivity may not only reflect 
a compensatory mechanism but also emerge as a prom-
ising therapeutic indicator, particularly within inter-
ventions such as mirror therapy where activity in the 
precuneus signals treatment effectiveness [44]. These 
observations indicated the significance of targeting brain 
regions with high resting metabolic rates, such as the 
PPC, to establish efficient rehabilitation strategies [45]. 
Notably, our study observed no significant task-induced 
brain activation areas during the digital rehabilitation 
tasks among the group with “notable to full upper limb 
function.” This absence of significant activation suggested 
that patients with high functionality, who have already 
achieved substantial recovery, no longer require intense 

Table 3  Comparison of the model performance of the FMA-UE severity classification
Dependent variables Sensitivity Specificity Positive

predictive value
Negative
predictive value

Overall accuracy

Gas stove operation
Task score 62.5% 30.0% 41.7% 50.0% 44.4%
Task score + oxy-Hb t-value in M1 87.5% 80.0% 77.8% 88.9% 83.3%
Watering the garden
Task score 75.0% 70.0% 66.7% 77.8% 72.2%
Task score + oxy-Hb t-value in M1 87.5% 80.0% 77.8% 88.9% 83.3%
Hitting the target
Task score 37.5% 50.0% 37.5% 50.0% 44.4%
Task score + oxy-Hb t-value in M1 37.5% 70.0% 50.0% 58.3% 55.6%
Turning off the lights
Task score 75.0% 70.0% 66.7% 77.8% 72.2%
Task score + oxy-Hb t-value in M1 87.5% 80.0% 77.8% 88.9% 83.3%
M1, primary motor cortex; oxy-Hb, oxyhemoglobin



Page 10 of 12Kim et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:115 

brain activation. Instead, they use more efficient neural 
circuits, indicating that successful brain recovery and 
reorganization have enabled them to perform normal 
motor functions with less overall brain activation [33, 
46]. This is consistent with previous functional MRI find-
ings in patients with chronic stroke, which indicated that 
greater lesion is correlated with increased cortical hyper-
activity [40, 47].

Furthermore, our findings demonstrate a correlation 
between cortical activation across various brain regions 
and upper limb functional levels, indicated by a signifi-
cant positive correlation between ipsilesional M1 and 
upper limb function. Conversely, the S1, frontal, and 
parietal lobes showed significant negative correlations 
with the motor function scores. These results indicate 
that patients with superior upper limb function rely more 
on the primary motor cortex whereas those with more 
severe impairment use compensatory cortical areas, high-
lighting the adaptive capacity of the brain in response to 
injury and rehabilitation [47]. In considering the implica-
tions of negative correlations in cortical activation, it ws 
imperative to reflect on findings from previous research. 
Baskett et al. (1996) noted sensorimotor impairments on 
the unaffected side in patients with right-lesion strokes, 
indicating compensatory adaptations associated with S1–
M1 coupling in the affected hemisphere—observations 
that are consistent with our own findings [48]. In addi-
tion, Ying et al. (2023) observed a negative correlation 
between motor function and the resting-state functional 
connectivity strength of the left S1 and M1 [49], further 
supporting the notion that improved motor function cor-
responds with reduced dependence on these brain areas. 
These examples highlighted the complex neural adapta-
tions during stroke recovery, where decreased activa-
tion in specific regions indicated effective adaptation and 
rehabilitation.

The incorporation of fNIRS-derived cerebral hemody-
namic data with digital rehabilitation task performance 
scores significantly enhanced the accuracy of the clas-
sification of rehabilitation levels. The combination of 
machine learning techniques and fNIRS signals repre-
sents a noteworthy advancement in neurorehabilitation, 
providing a more nuanced understanding of a patient’s 
neural status and the customization of interventions. The 
use of fNIRS in brain monitoring has attracted attention 
in recent research [50–52], with studies achieving > 85% 
accuracy in differentiating between stroke types and 
healthy individuals using fNIRS data combined with 
machine learning algorithms [53]. Moreover, the use of 
random forest algorithms to analyze fNIRS signals during 
motor tasks has shown promise in distinguishing patients 
with major depressive disorder, demonstrating an accu-
racy of 91.13% [54]. These findings highlight the transfor-
mative role of fNIRS in rehabilitation strategies, paving 

the way for personalized, brain-centric rehabilitation 
methods. This study contributes to the growing field of 
stroke rehabilitation research by highlighting the impor-
tance of further exploration and optimization of cere-
bral hemodynamic data integration to improve patient 
outcomes.

Our findings emphasized the significant potential for 
tailoring rehabilitation programs to the unique needs 
of stroke survivors. By examining diverse task perfor-
mances and the distinct patterns of cortical activation, 
our study provided valuable insights for the selection of 
rehabilitation tasks that target varying aspects of motor 
performance. This approach aligned with the evolving 
paradigm of personalized rehabilitation, emphasizing 
interventions tailored to each patient’s specific neural 
and functional profile. The use of the K-NN algorithm to 
classify the severity of motor impairment by analyzing 
task performance scores and cortical activation data illus-
trated the contribution of our research to more effective, 
customized rehabilitation strategies. The identification of 
tasks that elicited significant activation in key areas for 
motor recovery allows for their strategic integration into 
rehabilitation programs, thereby enhancing effectiveness. 
Transitioning these findings into clinical practice neces-
sitates further validation in larger, more diverse patient 
cohorts. Future research should focus on the develop-
ment of comprehensive guidelines for implementing 
task-specific rehabilitation interventions, facilitating the 
customization of therapy for optimal recovery outcomes.

This study provides important insights but also has 
limitations that future research should address. The small 
sample size limits the generalizability of the findings; 
thus, large-sample studies are warranted to better under-
stand cortical activation patterns in patients with stroke 
during digital rehabilitation. The cross-sectional design, 
involving only a single measurement session, restricts 
our view of the long-term effects of digital rehabilitation 
on recovery and neural plasticity. Longitudinal studies 
are necessary to understand these effects over time. Fur-
thermore, focusing on patients at specific rehabilitation 
stages and with certain stroke characteristics may nar-
row the applicability of the results. Future studies should 
involve a wider range of stroke types and recovery stages 
to comprehensively evaluate the effect of digital rehabili-
tation across diverse patient groups. Although the use 
of machine learning algorithms to classify rehabilita-
tion levels is innovative, such algorithms require further 
refinement and validation to enhance their accuracy and 
adaptability to the dynamic nature of stroke recovery. 
Overall, this study highlights the potential of integrating 
cerebral hemodynamic data in stroke rehabilitation, call-
ing for more comprehensive, varied, and technologically 
advanced research to optimize the rehabilitation process 
for stroke survivors.



Page 11 of 12Kim et al. Journal of NeuroEngineering and Rehabilitation          (2024) 21:115 

Conclusions
This study demonstrates the significant role of fNIRS 
in the monitoring of cortical activation during digital 
rehabilitation programs for patients with stroke. Nota-
ble activations in the ipsilesional M1, S1, and contralat-
eral PFC were found during digital rehabilitation tasks. 
These activations varied with motor impairment sever-
ity, reflecting the plasticity of the brain and its adaptive 
response to rehabilitation. Notably, the integration of 
a K-NN machine learning algorithm with task perfor-
mance and fNIRS data significantly improved the classi-
fication of the participants’ motor impairment severity. 
The results also emphasize the value of fNIRS as a nonin-
vasive, cost-effective neuroimaging tool in digital stroke 
rehabilitation. These results may support a multidimen-
sional approach that combines behavioral and cerebral 
hemodynamic data to customize rehabilitation interven-
tions and set a foundation for future research to optimize 
stroke rehabilitation outcomes using this technique.
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