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Abstract
Background Mild Cognitive Impairment (MCI) is an intermediate stage between the expected cognitive decline of 
normal aging and Alzheimer’s disease (AD). Its management is crucial for it helps intervene and slow the progression 
of cognitive decline to AD. However, the understanding of the MCI mechanism is not completely clear. As working 
memory (WM) damage is a common symptom of MCI, this study focused on the core stage of WM, i.e., the memory 
retrieval stage, to investigate information processing and the causality relationships among brain regions based on 
electroencephalogram (EEG) signals.

Method 21 MCI and 20 normal cognitive control (NC) participants were recruited. The delayed matching sample 
paradigm with two different loads was employed to evaluate their WM functions. A time-varying network based 
on the Adaptive transfer function (ADTF) was constructed on the EEG of the memory retrieval trials.to perform the 
dynamic brain network analysis.

Results Our results showed that: (a) Behavioral data analysis: there were significant differences in accuracy and 
accuracy / reaction time between MCI and NC in tasks with memory load capacity of low load-four and high load-
six, especially in tasks with memory load capacity of four. (b) Dynamic brain network analysis: there were significant 
differences in the dynamic changes of brain network patterns between the two groups during the memory retrieval 
stage of the WM task. Specifically, in low load WM tasks, the dynamic brain network changes of NC were more 
regular to accommodate for efficient information processing, with important core nodes showing a transition from 
bottom to up, while MCI did not display a regular dynamic brain network pattern. Further, the brain functional areas 
associated with low load WM disorders were mainly located in the left prefrontal lobe (FC1) and right occipital lobe 
(PO8). Compared with low load WM task, during the high load WM task, the dynamic brain network changes of NC 
during the memory retrieval stage were regular, and the core nodes exhibited a consistent transition phenomenon 
from up to bottom to up, which were not observed in MCI.
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Introduction
Alzheimer’s disease (AD), an aging-associated condi-
tion, is the leading cause of dementia and is quickly 
becoming one of the most expensive, lethal, and bur-
densome diseases of this century [1]. As the pathogen-
esis and mechanism of AD remain unclear, predicting, 
preventing or reversing the disease is still a worldwide 
challenge. Recently, attention has been paid to mild cog-
nitive impairment (MCI), which is an intermediate state 
between normal aging and AD. It is viewed as a “win-
dow” in which it may be possible to intervene and delay 
progression to AD [2]. The diagnostic criteria for MCI 
include abnormal cognitive function in one or more 
domains, normal daily activity, and absence of demen-
tia [3]. Among these different cognitive domains, mem-
ory decline is the most significant and common clinical 
manifestation, and it is also a core clinical standard for 
diagnosing MCI developing to AD [4], including episodic 
memory impairment [5] and working memory (WM) 
impairment [6].

WM is the fundamental function by which we break 
free from instinctive reaction to gain control over our 
own thoughts and is foundational to the organization of 
goal-directed behavior, resulting in many complex cogni-
tive functions rely on WM [7, 8]. According to the cur-
rent definition of WM, as a memory system, in which 
information can be stored for a short period of time and 
updated frequently, and can be quickly extracted [7, 9]. 
So it can be simply divided into three stages, including 
memory coding, memory delay, and memory extraction. 
In memory coding, the brain receives visual and auditory 
stimulus sequences from the external world. In memory 
delay, the brain consolidates WM information to deepen 
the memory while excluding irrelevant external informa-
tion attention. In memory extraction, the brain quickly 
calls and extracts the relevant information to perform the 
following execution operations.

Based on the theory model of WM capacity, individu-
als have limited WM capacity referring to the fact that 
individuals can hold only a limited amount of mental 
content available for processing [10, 11]. Currently, mea-
sures of WM capacity are recognized as major determi-
nants of cognitive development in childhood [12] and 
old age [13], as well as individual differences in intellec-
tual abilities [14–16]. The impairment of WM capacity is 
mainly manifested through the difficulties with transient 

memory and delayed recall, a decline in association abil-
ity and impaired reading comprehension. These chal-
lenges hinder the ability of MCI patients to process, store 
and recall information effectively. As such, WM capacity, 
especially for visual components, has been used as a tool 
for distinguishing MCI patients [6, 17, 18] from healthy 
elderly individuals [19, 20].

Electroencephalogram (EEG) signal is an objective 
record of neuron electrical activities in the brain, reflect-
ing neural activation and communications [21, 22]. Its 
objectivity and high temporal resolution provide an 
intrinsic advantage for studying cognitive neural mecha-
nisms related to WM processing [23]. It is studied that 
cognitive process is related to EEG oscillations [24, 25]. 
At present, the neural oscillation frequency bands related 
to WM found in humans and non-primates are mainly 
concentrated in θ(4–8  Hz), α(8–13  Hz), β(13–30  Hz), 
and γ(> 30 Hz) [7]. Among them, the θ and α frequency 
bands are two widely studied frequency bands [26–33]. 
The θ neural oscillation was first discovered in the hippo-
campus entorhinal cortex system of animals. It originates 
from the interaction between glutamate and dopaminer-
gic neurons and encodes spatial position information 
through phase precession. For WM, the θ oscillations 
play a critical role, persisting throughout the entire WM 
process [34, 35]. WM requires the coordinated effort of 
multiple brain regions with specific functions. For exam-
ple, Babiloni et al. found abnormal cortical neural syn-
chronization and altered functional connectivity between 
distant brain areas in individuals with MCI [36]. Wei et 
al. investigated the electroencephalographic changes 
during a color matching selective attention task in indi-
viduals with MCI and found that long-range functional 
integration in the brain is impaired, leading to decreased 
overall brain network functionality [37]. Compared to 
α oscillation, the θ oscillation is very suitable for large-
scale neural integration, as it synchronizes in the cerebral 
cortex during the WM process θ oscillation can regulate 
information exchange between distant brain regions, 
thereby connecting different brain regions [38].

At present, the electrophysiological mechanism of 
MCI-WM disorders is still unclear. Previously, most 
studies were based on resting state EEG to explore the 
brain connectivity of MCI, and some preliminary results 
were obtained, but there was still controversy [39–44]. 
For example, in a previous brain network study based on 

Conclusions Behavioral data in the low load WM task paradigm and abnormal electrophysiological signals in the left 
prefrontal (FC1) and right occipital lobes (PO8) could be used for MCI diagnosis. This is the first time based on large-
scale dynamic network methods to investigate the dynamic network patterns of MCI memory retrieval stages under 
different load WM tasks, providing a new perspective on the neural mechanisms of WM deficits in MCI patients and 
providing some reference for the clinical intervention treatment of MCI-WM memory disorders.

Keywords Mild cognitive impairment, Electroencephalography, Working memory, Dynamic network



Page 3 of 17Jiang et al. Journal of NeuroEngineering and Rehabilitation           (2025) 22:58 

resting state tasks, it was found that in the θ frequency 
band, the connectivity between the frontal and occipital 
lobes, as well as the connectivity between the central and 
occipital lobes, showed significant differences between 
MCI and NC. But in the α frequency band, there was 
no significant difference in the functional connectivity 
between the two groups [43]. However, in a review study, 
it was observed that the α synchronous specificity of 
the temporal parietal lobe (as well as the frontal parietal 
lobe) was reduced in MCI patients [44]. On the one hand, 
during resting state, many factors can alter data, such as 
specific instructions, pre-recording cognitive states, caf-
feine intake, or random spontaneous thoughts [45]. On 
the other hand, for the elderly population who are dif-
ficult to cooperate with and have memory impairment 
characteristics, memory related cognitive paradigms 
are more likely to obtain specific electrophysiology and 
reveal the electrophysiological mechanisms of memory 
impairment. Decades of brain mapping research have 
linked human WM to multiple neuroanatomical centers, 
including the frontal, parietal, temporal, and occipital 
regions [46–49]. By studying the abnormal cognitive pro-
cessing patterns of patient groups at the level of global 
brain networks, including related network characteristics 
such as regular resource allocation during tasks (ordered 
networks) and network central nodes, it is possible to 
explore the brain mechanisms underlying WM impair-
ments in MCI. It holds promise for providing diagnostic 
marker for the early detection of the MCI disease.

The memory retrieval stage reflects an individual’s WM 
capacity and is considered as the core stage of WM. The 
memory extraction stage is a highly complex dynamic 
process that involves intertwined cognitive processes 
such as attention, information retrieval, recognition 
and activation, recognition and recall, as well as per-
ception and interpretation. The time-varying brain net-
work- dynamic brain network is a network model that 
can describe the temporal changes in connectivity pat-
terns between brain regions, making it of great applica-
tion value in neuroscience research, including network 
laterality in motor imagery processes, abnormal sensory 
gating in patients with schizophrenia, and abnormal 

brain community reconstruction in patients with Atten-
tion-deficit/hyperactivity disorder (ADHD) [50–54]. As 
such, exploring the dynamic brain network of memory 
retrieval stage is of great significance for better under-
standing of WM information processing. Furthermore, 
EEG research on MCI based on different WM load tasks 
(such as high and low loads) is of great value for under-
standing the cognitive mechanisms of MCI, evaluating 
disease severity, exploring intervention strategies, and 
promoting the development of related fields. Therefore, 
the purpose of this study is to (a) evaluate the WM mem-
ory ability of MCI based on high and low load WM tasks, 
and determine the relationship between MCI and WM 
load; (b) Based on large-scale dynamic brain network 
method, elucidate the dynamic network characteristics of 
MCI WM retrieval stage during high and low load WM 
task, reveal the relationship between WM disorders of 
MCI and EEG, investigate the effect of increasing WM 
load on brain connectivity in MCI, and provide diagnos-
tic marker and recommended intervention strategies for 
early detection of diseases.

Method
Participants
Twenty-one individuals with MCI and twenty normal 
cognitive control (NC) participated in this experiment. 
The detailed information of the participants was listed 
in Table  1. The purpose and content of this study have 
been informed to all participants, and all participants had 
signed informed consent forms in advance. The proce-
dure of the study was in accordance with the Declaration 
of Helsinki, and has been approved by the Ethics Com-
mittee of West China Medical College, Sichuan Univer-
sity. (Approved Number: 2021(1447)).

The number presented is the mean and standard devia-
tion in the parentheses.

NC: normal cognitive control; MCI: mild cognitive 
impairment; MOCA: Montreal Cognitive Assessment; 
MMSE: Mini Mental State Examination. *p < 0.05.

MCI Inclusion Criteria: Based on the “2018 Chinese 
Diagnosis and Treatment Guidelines for Dementia and 
Cognitive Impairment”: Complaints of memory loss; 
Montreal Cognitive Assessment (MoCA) score < 26/30, 
Mini-Mental State Examination score (MMSE) > 24; 
Functional Activities Questionnaire score (FAQ) > 6/8, 
Activities of Daily Living (ADL) = 100; The range of age: 
65–75; No history of anti-AD drugs; No history of neuro-
logical or psychiatric diseases;

MCI Exclusion criteria1: Other diseases that can lead 
to cognitive impairment, such as a history of stroke, 
neurological deficits, neurological disorders, and severe 
physical illnesses; Having hearing or visual impairments 
that prevent cooperation in completing the neurocogni-
tive scale.

Table 1 Descriptive statistics of the participants
NC group MCI group t/x2 p

No. of participants 20 21 - -
Sex (Female/Male) 12/8 15/6 0.595 0.440
Age (years) 70.00 (3.39) 70.33 (2.85) 0.444 0.659
Education (years) 11.05 (3.63) 9.52 (3.50) 1.369 0.179
MOCA 26.70 (1.38) 19.91 (2.98) 9.284 < 0.001*

MMSE 28.05 (1.43) 26.76 (2.02) 2.343 0.024*

The number presented is the mean and standard deviation in the parentheses

NC: normal cognitive control; MCI: mild cognitive impairment; MOCA: Montreal 
Cognitive Assessment; MMSE: Mini Mental State Examination. *p < 0.05
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NC Inclusion Criteria: No complaints of memory loss; 
MoCA > 26/30, MMSE > 24; Age 65–75; No psychiatric or 
central nervous system diseases.

Experimental protocol
The EEG signals were acquired using the NeuroScan 
system, with 32 electrodes placed at 10–20 standard 
electrode positions internationally. The signal sampling 
frequency was 250  Hz, and to guarantee reliable data 
quality, throughout the experiment, the impedance for all 
electrodes was kept below 10 kΩ. Before the experiment, 
the participants would be informed about the procedures 
of the experiment, and practice the experimental task to 
be familiar with the entire process. They sat in a room 
with dim lighting and reduced sound facing the screen. 
All the participants have normal or corrected vision.

The experiment used the delayed matching sample 
paradigm. It simulates the practical application scenar-
ios of WM by presenting specific stimuli and response 
requirements, and is one of the main paradigms in WM 
research. It typically includes target presentation stage, 
delay stage, and detection matching stage. The setting of 
WM load is mainly achieved by adjusting the number of 
memory items presented in the memory stage, which can 
help researchers comprehensively evaluate the WM abil-
ity of the participants. It is recognized that when memo-
rizing objects with simple features, for healthy adults, the 
number of objects was around four that could be stably 
memorized. In order to explore the WM impairment of 
MCI, the memory load was set to four and six objects in 
this study, defined as low memory load and high memory 
load, respectively. The stimulus picture used in the exper-
imental paradigm was a simple two-dimensional black 
figure. The detection matching stage, also known as the 
memory extraction stage, requires participants to make 
button reactions in response to whether the current 
detection image has appeared in the target presentation 
stage. The detection image of detection matching stage 

in each trial was pseudo random, with a 50% probability 
of being one of the previous four stimulus images of the 
current trial and 50% probability of not. Correspondingly, 
the reaction time of the participants is recorded. Due to 
the high level of attention required to complete the WM 
task, this experiment had only a run to ensure that we 
could obtain relatively accurate behavioral data and sta-
ble EEG data. The run consisted of two WM tasks with 
a 5-minute interval between them. Each task had 20 tri-
als. The accuracy rate was calculated after the task. The 
specific experimental paradigm and flow were shown in 
Fig. 1.

Dynamic brain network analysis
Construction of the dynamic brain network
Currently, various time-varying directed connectivity 
analysis methods with different causal relationship defi-
nitions have been proposed based on time-varying mul-
tivariate autoregressive (TV-MVAR) models, such as 
adaptive directed transfer function (ADTF), adaptive par-
tially directed coherence, and adaptive Granger causal-
ity (GC) [55]. Although there are numerous parametric 
methods, in time-varying directed EEG network con-
struction, the most widely used method is ADTF because 
of its good performance in interpretations and accurately 
capturing of the time-variant causality between signals 
[56, 57]. As a non-parametric method, ADTF has inher-
ent advantages in multi-channel signal causal analysis 
in different frequency bands, and can capture transient 
network information, so it has great application value in 
cognitive research, and helps us understand and explain 
the transient information flow and functional connectiv-
ity of the brain during the memory retrieval stage of WM 
tasks.

The memory retrieval data was used to construct 
the time-varying network with ADFT. Before the net-
work construction, the raw EEG data was preprocessed 
with the following steps: average reference;1–30  Hz 

Fig. 1 Experimental setup. (a) Delayed sample matching Paradigm (memory load four and six) and the entire experimental process, (b) EEG data collec-
tion of the participant
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bandpass filtering; The Fast Independent component 
analysis (ICA) was performed using a built-in function 
from EEGLAB v2022.0 with MATLAB R2018b (Math-
Works Inc., USA). As a data decomposition technique, 
ICA decomposes EEG signals into multiple independent 
components, each representing a unique brain source or 
artifact source (such as eye movements, muscle activity, 
etc.). The ICA was utilized to remove artifacts with rec-
ognition artifact components greater than 80%, includ-
ing blinking (> 80%), vertical/horizontal eye movement 
(> 80%), muscle (> 80%), and electrocardiogram (> 80%). 
On average, 8 of 32 components were discarded for each 
participant (different for each individual); Baseline cor-
rection and data segmentation. In the process of data 
segmentation, the length of EEG data used for memory 
retrieval stage is 2.5  s [0, 2.5] seconds, where 0  s repre-
sents the moment when the stimulus image is presented. 
For each participant, the dynamic time-varying network 
will be constructed based on trial-trial level. The con-
struction process was as follows: Firstly, based on previ-
ous experimental records, we manually removed trial 
including incorrect artifacts, artifacts with incorrect 
reactions, and artifacts caused by technical issues. Next, 
all remaining artifacts free trial were further used to con-
struct the time-varying network with the trial-by-trial. 
Then, the time-varying network corresponding to each 
trial of two task (low load task and high load WM task) 
of each participant were further averaged respectively. 
Finally, this averaging process will provide the final time-
varying network corresponding to the two WM tasks of 
each participate.

A detailed introduction to ADTF can be described as 
follows:

For the time series of each trial, the TV-MVAAR model 
coefficient is calculated by the following formula:

 X (t) =
∑

P
i=1A (i, t) X (t − i) + E (t) (1)

Where X(t) is the multi-channel EEG data of the whole 
trial time series, P is the optimal order of the TV-MVAAR 
model, A(i, t) is the coefficient of the TV-MVAAR model 
estimated by the Kalman filter algorithm, and E(t) is the 
white noise of the signal X(t).

Here, the model order P is automatically evaluated by 
Akaike information criterion (AIC) in the range of 1–30, 
which is defined as follows:

 AIC (P ) = In[det (S) + 2M2P/N ] (2)

Where M is the number of time-varying network nodes, 
P is the order of TV-MVAAR model, N is the number of 
signal sampling points, and S is the covariance matrix. 
In our study, the optimal model orders were in the range 

of 2–20. The observation equation and state equation 
are obtained by the forgetting factor of recursive least 
squares (RLS).

After the coefficients of TV-MVAAR model are 
obtained based on formula (1), H(f, t) can be further 
obtained through the transformation of A(i, t) frequency 
domain. The element Hij(f, t) in H (f, t) represents the flow 
of information from node j to node i at time point t and 
frequency point f. Its relevant definitions are as follows:

 A (f, t) X (f, t) = E(f, t) (3)

 X (f, t) = A−1 (f, t) E (f, t) = H (f, t) E(f, t) (4)

H e r e : 
H (f, t) = A−1 (f, t) , A (f, t) =

∑ p
k=0Ak (t) e−j2π f∆ tk

Ak is the coefficient matrix of the model,X(f, t) and E(f, 
t) are the conversion forms of signal X(t) and its corre-
sponding white noise E(t) in the frequency domain.Stan-
dardized ADTF, i.e. γ2 (f, t), in which the elements γij

2 (f, 
t) describes the direct information flow from j to i, and is 
often defined in the range of (0, 1). Its specific definition 
is as follows:

 
r2

ij (f, t) = |Hij (f, t)|2∑
n
m=1|Him (f, t) |2

 (5)

Finally, ADTF is defined as ADTF normalized within 
the frequency band of [f1, f2], as follows. For more infor-
mation on the ADTF method, please refer to Wilke’s 
research [7].

 
Θ 2

ij (t) =
∑ f2

k=f1
r2

ij(k, t)
f2 − f1

 (6)

Considering that the frequency range of the WM mem-
ory retrieval stage is mainly θ Hz, where f1 is 4 Hz and f2 
is 7 Hz.

Network parameter analysis
Based on the objective decision-making indicators 
occurring in the 220–350 ms time window [58], to some 
extent, memory retrieval can also be seen as a decision-
making behavior, which can be understood as a complex 
cognitive process that includes a variety of decision-mak-
ing links. Therefore, we divided memory retrieval stage 
into three period according to decision-making theory: 
the pre-retrieval period, the retrieval period, and the 
post-retrieval period. As ADTF captures the dynamic 
networks for each time point, and the time points nearby 
showed the high similar brain networks, in this study, the 
time-varying network with time interval of 60ms, which 
resulted in nine dynamic brain networks for the memory 
retrieval stage.
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After obtaining the nine brain networks of the mem-
ory retrieval stage of each participant under two tasks, 
we hope to identify specific differences between the two 
groups. Firstly, in order to investigate the differences of 
brain network changes during dynamic memory retrieval 
stage, we statistically analyzed the brain connectivity val-
ues of the two groups and obtained the dynamic differen-
tial network patterns of the memory retrieval processes 
of the two groups in two tasks. Then, in order to further 
determine the heterogeneity sources of the significantly 
different brain network patterns between the two groups, 
such as abnormal brain regions, we identified the abnor-
mal core nodes based on the significantly different brain 
networks at the group level. Finally, in order to obtain 
more important specific EEG indicators and key EEG 
nodes to serve the clinical diagnosis and intervention of 
MCI, we conducted further analysis on these core nodes 
including correlation analysis between the outdegree 
of core nodes and behavioral data, as well as statistical 
significance analysis of outdegree of core nodes in two 
groups.

The out-degree is one of the attributes of the EEG net-
work and is commonly used to measure the characteris-
tics of brain information sources and dissemination. A 

node with a significant out-degree is often regarded as a 
command center that sends information to other nodes. 
Based on the constructed time-varying network, the out-
degree information of each node at each sampling time 
point can be obtained by the following formula:

 ki (t) =
∑

j?N aij (t) , i ̸= j (7)

Where N is the number of all nodes in the network; aij(t) 
is the connectivity from node i to node j at time point t.

Based on the time-varying network of significant dif-
ferences between two groups, we obtained some nodes 
with significant differences. Next, we calculated the 
output degree information of each node with signifi-
cant differences at each sampling time point. Finally, we 
identified these nodes with output degrees greater than 
(mean + standard deviation) as core nodes.

The specific data processing flowchart was shown in 
the Fig. 2.

Statistical analysis
Data analysis was performed using SPSS 21.0 statistical 
software. Independent sample t-tests and Mann-Whitney 

Fig. 2 Specific data processing flowchart. (a) Experimental setup and EEG data preprocessing (b) Construction and Analysis of Dynamic Brain Networks 
in the θ Band (c) Analysis of network parameters
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U tests were used to compare the neurocognitive Scale, 
behavioral data (reaction time and accuracy), and ADTF 
mean (corrected by using false discovery rate (FDR)) in 
the θ frequency band between two groups. A p-value less 
than 0.05 was considered statistically significant.

Results
Behavior analysis
During two WM tasks, in low load WM tasks, there were 
significant differences in accuracy (p < 0.001) and the 
ratio of accuracy to reaction time (p < 0.001), i.e., accu-
racy/reaction time, between the NC group and MCI 
group, but no significant difference in reaction time 
(p = 0.745); In high load WM tasks, there were significant 
differences in accuracy (p = 0.037) and accuracy/response 
time (p = 0.008) between the NC group and MCI group, 
but there was no significant difference in reaction time 
(p = 0.175). For the behavioral data within NC and MCI 
two groups, in the NC group, the results showed that 
there were significant differences in accuracy (p < 0.001) 
and accuracy/ reaction time (p < 0.001) between the high 
and low load WM tasks, but there was no significant dif-
ference in reaction time (p = 0.464). In the MCI group, 
there was no significant difference in accuracy (p = 0.612), 
reaction time (p = 0.101), and accuracy/ reaction time 
(p = 0.122) between high and low load WM tasks. As 
shown in Fig. 3.

Time-varying network of the memory retrieval stage
We statistically analyzed the time-varying dynamic brain 
network in two groups during different load WM tasks. 
There were significant differences in the brain network 
patterns of the two groups in the three period of WM 
memory retrieval stage (p < 0.05), as shown in Fig.  4. In 
low load WM tasks, brain network of NC with signifi-
cant connectivity mainly appeared in the pre and mem-
ory retrieval period, and the brain network pattern did 
not change significantly over time. The dynamic causal 

network of the brain showed brain connectivity from 
the occipital lobe area to the anterior side of the brain; 
In MCI, the brain networks with significance connectiv-
ity emerged throughout the memory retrieval stage, with 
little change in brain network patterns over time. The 
significant brain network connectivity mainly appeared 
during the post-retrieval period. The dynamic causal 
network showed a flow from the anterior brain region to 
other regions. In high load WM tasks, in NC, the trend of 
network change over time throughout the entire memory 
retrieval stage was not significant. MCI had a significant 
network change over time throughout the entire memory 
retrieval stage, especially during the retrieval period.

I-nodes analysis
The core node of the brain network plays an important 
role in the integration of brain function. The analysis of 
core nodes helps to understand the relationship between 
MCI WM damage and various brain regions. Our results 
showed that there were significant differences in the 
transfer of the core node of the significant difference 
network over time between the two groups as shown 
in the Fig.  5. Specifically, in the low load WM retrieval 
stage, the core nodes of NC were mainly distributed in 
the occipital lobe and parietal lobe, that was, the pre 
brain region was less involved in tasks. The important 
core nodes (I-nodes) in NC were mainly distributed in 
the parietal lobe (CP1、P3). The core node had a trend of 
moving from occipital lobe to parietal lobe. However, the 
core nodes of MCI in the whole memory retrieval stage 
were relatively scattered, and the I-nodes in MCI were 
F3, FC1, CP5, PO8. In the entire dynamic process, there 
was no obvious rule of the core node. In high load WM 
tasks, the core nodes of NC were mainly distributed in 
the prefrontal and parietal lobes, that was, the occipital 
lobe was almost less involved. The I-nodes was located 
in F4, CP2, and PZ. In the process of memory retrieval 
stage, the core node appeared to shift from parietal lobe 

Fig. 3 Statistical analysis of behavioral data of two groups under WM task (left: load four, right: load six). (a) Statistical analysis of accuracy of two groups, 
(b) Statistical analysis of reaction time of two groups, (c) Statistical analysis of accuracy/reaction time of two groups. *p < 0.05, **p < 0.001
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Fig. 4 Significantly stronger brain functional connectivity in WM task. (memory retrieval stage) (a) the low-load WM task, (b) the high-load WM task. 
Information flow Image j > > i.NC > MCI: More significant brain connectivity in NC. MCI > NC: More significant brain connectivity in MCI. (p < 0.05, FDR 
correction)
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to frontal lobe, that was, the core node moves forward. 
The core node of MCI was mainly distributed in the pre-
frontal and occipital regions, with less involvement of the 
parietal lobe, and the I-node was AF4. There was no obvi-
ous rule in the whole process of the memory retrieval 
stage.

Correlation between the I-node and memory accuracy
In order to determine the more important I-nodes in two 
groups during different load WM tasks, we analyzed the 
relationship between the I-nodes outdegree and memory 
accuracy. Our results indicated that the correlation coef-
ficient between memory accuracy and I-nodes in low 
load WM tasks was significantly higher compared to 
that in high load WM tasks. As shown in Fig. 6. Specifi-
cally, in low load WM tasks, there was a strong correla-
tion between the occipital lobe (PO8) and the memory 
accuracy throughout the entire retrieval stage. The fron-
tal lobe had a moderate to weak correlation with the WM 
memory accuracy in the retrieval period and the post-
retrieval period (F3、FC1), while the parietal lobe had a 
weak correlation with the WM memory accuracy in the 
pre- retrieval period (CP5). In high-load WM tasks, the 
frontal lobe (F4) showed a moderate correlation with 

WM memory accuracy in pre-retrieval and retrieval 
period, while other core nodes had no significant correla-
tion with memory accuracy.

k-nodes analysis
In order to further explore the heterogeneity of brain 
regions - key cores nodes (K-nodes) in two groups under 
different load WM tasks and provide some strategies 
for later intervention, we analyzed the outdegree of all 
I-nodes. The results showed that there was a more signif-
icant difference in the outdegree degree values of I-nodes 
between the two groups in low load WM tasks, provid-
ing corresponding EEG evidence for the more significant 
behavioral differences in the low load WM task, as shown 
in Fig. 7. Specifically, in low load WM tasks, there were 
significant differences in the outdegree values of FC1 and 
PO8 between the two groups during the entire memory 
retrieval stage, suggesting that there may be abnormali-
ties in the left frontal and right occipital brain regions of 
MCI. Meanwhile, K-nodes FCI and PO8 electrodes can 
serve as sensitive channels to distinguish between the 
two groups. However, there were almost no significant 
nodes in high-load WM task.

Fig. 5 The dynamic change process of significant core nodes over time between two groups under WM task (memory retrieval stage). (a) the low load-
WM task, (b) the high-load WM task. NC > MCI: More significant core nodes in NC. MCI > NC: More significant core nodes in MCI
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Fig. 6 Correlation analysis between memory accuracy and outdegree of electrode with significance difference during WM task. (a) the low load-WM task, 
(b) the high-load WM task. *p < 0.05, **p < 0.01
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Fig. 7 Statistical significance analysis of the core node outdegree of the two groups of people in WM task (memory retrieval stage) over time. (a) the low 
load-WM task, (b) the high-load WM task. *p < 0.05, **p < 0.01
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Discussion
This study employed a large-scale EEG dynamic effect 
network method to explore the WM impairment of MCI 
under different loads. To our knowledge, this was also 
the first exploration of the dynamic brain network pat-
terns and EEG characteristics of WM disorders in MCI. 
Our research findings indicated that: (a) Behavioral data 
analysis: In WM tasks with different memory loads, there 
were significant differences in accuracy and accuracy/
reaction time between MCI and NC. Compared to load 
six, load four task was more conducive to distinguish-
ing MCI from NC. (b) Dynamic brain network analysis 
based on EEG: There were significant differences in the 
dynamic network patterns of memory retrieval stages 
between the two groups in different load tasks, with the 
differences mainly occurring in low load tasks, and the 
brain functional areas related to low load WM injury 
were mainly located in the left prefrontal lobe and right 
occipital lobe. In the low load WM task, NC exhibited 
more regular dynamic causal network pattern changes, 
and the core nodes were mainly distributed in the occipi-
tal lobe and parietal lobe, and there was a bottom-up 
core node transfer phenomenon in per and memory 
retrieval period. While the dynamic causal brain network 
of MCI showed no obvious regularity, with core nodes 
mainly distributed in the frontal lobe, and the differ-
ence between the two groups of k-nodes mainly located 
in FC1 and PO8. In contrast to low load memory, in the 
high load memory retrieval stage, NC also showed reg-
ular changes in dynamic causal network patterns, the 
core nodes were mainly distributed in the prefrontal and 
parietal lobes, and there was an up-bottom-up transfer 
phenomenon of the core nodes in the pre middle post 
memory retrieval period. While the dynamic causal brain 
network of MCI showed no obvious regularity, the core 
nodes of MCI were mainly distributed in the prefrontal 
and occipital regions.

Current research on WM has primarily focuses on the 
difference in memory load among individuals with nor-
mal cognition, with less attention given to the impact of 
memory capacity load on those with MCI. The existing 
research has proved that when remembering objects with 
simple characteristics, the WM capacity of healthy adults 
is stable at about 4, which is a widely accepted view [59, 
60]. This means that when the capacity is 4, normal sub-
jects can process simple objects and react correctly. 
However, our results revealed a significant difference 
between MCI patients and normal individuals when the 
memory capacity was set at four. That is, the WM of the 
MCI appeared to be compromised. With the increase in 
memory load, individuals with normal cognition struggle 
to manage multiple goals effectively, leading to a decrease 
in their accuracy rate. Conversely, the accuracy rate of 
MCI did not show significantly changes. But there were 

still notable differences between the two groups. It can be 
inferred that MCI patients did receive a certain degree of 
impairment in WM ability, which was distinct from NC 
when WM capacity load was 4 items, suggesting that the 
paradigm of WM task load 4 items is effective in differen-
tiating between the two groups, and hold greater clinical 
diagnostic value.

Critically, the rate of these WM “failures” is strongly 
predictive of WM capacity as a whole. A key question, 
then, is why WM task failures occur. During the mem-
ory retrieval stage with different memory loads, there 
were significant differences in the dynamic brain network 
patterns between the two groups of participants. The 
dynamic network with significant differences was driven 
by dynamic core nodes, reflecting abnormal changes in 
the activation patterns of dynamic brain regions. These 
results also provide electrophysiological evidence that 
WM of MCI population is severely damaged compared 
with NC group. Our research indicated that in the pro-
cess of memory retrieval, in NC, the core nodes of the 
low load memory retrieval stage were mainly distrib-
uted in the occipital and parietal regions, and there was 
a bottom-up transfer trend of network core nodes mov-
ing from the occipital to parietal lobes. With the increase 
of memory load capacity, the core nodes of the network 
were mainly distributed in the anterior brain area, and 
there was a bottom-up transfer phenomenon of the net-
work core nodes migrating from the parietal lobe to the 
prefrontal lobe. In a word, the dynamic changes in the 
brain network of NC exhibited a regular memory load 
effect, while MCI showed no significant rule in both WM 
tasks. From the perspective of WM mechanism, WM 
is an attention control system with limited resources. 
Individuals can flexibly allocate and transfer attention 
resources according to their goals. Previous studies have 
demonstrated that under conditions of low WM load 
during memory-matching visual search tasks, there is a 
strong coupling between prefrontal cortex and posterior 
visual area [61]. The coupling suggests that visual fixa-
tion will dominate in the early stage of memory retrieval, 
at this period, the core part of brain area will fall in the 
occipital region. Attention is generally considered as the 
core executive function to promote WM retention, and 
it will be involved in the three stages of coding, reten-
tion and retrieval of WM [62]. Attentional control can 
actively maintain relevant information and inhibit the 
ability of irrelevant information [63], thus enhancing 
WM performance. With the retrieval of memory, the 
core node of NC began to migrate from the occipital 
region to the parietal lobe. For a long time, the poste-
rior parietal cortex has been considered as the key brain 
region involved in controlling the amount of information 
stored in visual WM. It is proposed that the storage of 
visual WM includes not only the quantity dimension of 
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memory information, but also the accuracy dimension 
of storage [64, 65]. Therefore, the transfer from occipi-
tal lobe to parietal lobe in the low load WM retrieval 
stage reflected a bottom-up cognitive processing pro-
cess in the normal low load WM retrieval stage. When 
the WM capacity was six, with the increasing difficulty 
of the task, at the stage of the memory retrieval process, 
different from the low load task, the NC’s core node had 
already existed the migration phenomenon - the core 
node change process moved forward from the parietal 
lobe to the frontal lobe, and there was almost no occipital 
lobe activation. This is the same as the result of a previ-
ous studies [66]. The researchers used multivariate analy-
sis to explicitly study the change of primary visual cortex 
activity with the amount of information stored in visual 
WM, found that the accuracy of decoding the stored 
content of visual WM from the activity of primary visual 
cortex decreased with the decrease of memory accuracy, 
which was also in line with the phenomenon of flexible 
resource allocation with more goals for individuals. That 
is, when the task difficulty increases, reduce the alloca-
tion of occipital visual resources. In different load tasks, 
compared to low load tasks, the dynamic brain network 
changes of NC in high load tasks appear less regular. 
This means that the controllability of the brain network 
decreases with increasing difficulty, which is consistent 
with the results of a previous fMRI study based on n-back 
tasks [67]. This may be due to the increasing complex-
ity of the task, which limits the brain’s ability to re allo-
cate resources and dynamically adjust them, leading to 
a decrease in network controllability. Nonetheless, com-
pared to MCI, NC still exhibited a relatively regular and 
stable brain network pattern in WM tasks with different 
loads, which had a positive impact on the performance 
of WM tasks. It can improve the efficiency and accuracy 
of WM tasks by optimizing the connections and commu-
nication between neurons, promoting coordination and 
cooperation between different brain regions, and adapt-
ing to changes in task requirements. However, there are 
significant differences in the dynamic network connec-
tivity patterns of MCI, whether under high or low WM 
loads, such as irregular changes in the dynamic network 
and disordered dynamic core nodes. This is also similar 
to a previous study based on fMRI, where the network 
connection mode of MCI in WM tasks is more dispersed 
compared to NC [68]. Disordered dynamic networks may 
lead to a decrease in resource allocation and configura-
tion efficiency [69]. When the core nodes of the network 
are relatively dispersed, it means that the power and con-
trol of the network are relatively dispersed, the network’s 
anti-interference ability is poor, and the efficiency of pro-
cessing information is low, these factors might collec-
tively contribute to suboptimal behavioral outcomes.

The next question is which core nodes of the brain net-
work mediate the differences in WM abilities between 
two groups. Delving into this issue would help us gain 
a deeper understanding of the mechanisms of WM and 
reveal the sources of inter-individual variability in WM 
performance. Such insights are helpful for the advance-
ment of diagnostic protocols and the development of tar-
geted therapeutic interventions, for example, researchers 
can later put more energy to study these areas where 
active hubs lie in such as placing Transcranial alternat-
ing current stimulation (tACS). The behavioral data of 
the two groups in the low load WM task were more sig-
nificantly different compared with high load WM task, 
and the cause of WM impairment in the MCI may be 
the abnormal representation of the left prefrontal lobe 
(FC1) and the right occipital lobe (PO8) in the functional 
brain regions. In the process of WM, the frontoparietal 
network plays an important role in higher cognitive pro-
cesses such as executive control, and its components 
also include bilateral dorsolateral prefrontal cortex and 
bilateral posterior parietal cortex. The frontal cortex is 
mainly responsible for coding prospective action infor-
mation [70] as well as the control process of attention 
[71], which runs through almost the whole WM task 
process. Therefore, functional impairment and degen-
eration of the frontal lobe may be an important cause of 
WM impairment in MCI. As a recent ERP study based 
on short-term memory tasks analyzed distinguishable 
brain wave patterns in the normal control group, amnes-
tic MCI (aMCI), and AD brains, the results showed 
that the left frontal signal associated with WM may be 
a potential effective ERP biomarker, indicating cogni-
tive decline and predicting cognitive status 5 years later 
[72]. At the same time, the research based Magnetic 
Resonance Imaging (MRI) showed that in the visuospa-
tial WM task, aMCI patients showed the characteristics 
of reduced activity in the frontal lobe and visual cortex 
during the coding and recognition periods [73]. Atten-
tion related to the occipital lobe is an important com-
ponent of executive control mechanisms, and damage to 
attention allocation during memory retrieval may be a 
significant factor in WM damage in the MCI group. The 
evidence from imaging showed that in the WM task, the 
brain regions from posterior cingulate gyrus to medial 
precuneus in MCI group were inactivated, and at the 
same time, the activation of medial parietooccipital lobe 
and right parietal cortex also decreased in the retrieval 
stage, and the subsequent follow-up investigation further 
found that the above changes could predict the decline of 
living cognitive level of these people to a certain extent 
after two year [74]. Similar to these results, in our study, 
we found that MCI exhibited abnormal activation in the 
left prefrontal and right occipital lobes throughout the 
entire memory retrieval process, resulting in defects in 
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the target attention, information update, target stimulus 
detection, conflict processing, and other processes of in 
WM task, ultimately leading to a decrease in WM ability. 
In the literature on MCI, an interpretation of abnormal 
brain activity that has been advanced is the concept of 
development of compensatory networks [75–79]. Exist-
ing research in the exploration of mechanisms underlying 
MCI-WM has yielded a variety of divergent conclusions, 
such as abnormalities in brain functional areas, includ-
ing the hippocampus, medial temporal lobe, anterior 
cuneiform lobe, prefrontal lobe, and parietal lobe, and 
abnormal brain connectivity, including frontoparietal 
network and default network, mainly due to differences 
in research methods across studies (in the predominant 
utilization of Functional Magnetic Resonance Imaging 
(fMRI) techniques), WM paradigm, inclusion criteria, 
and sample size, resulting in a lack of comparability of 
results. Furthermore, WM tasks involve the involvement 
of different brain regions in the memory, retention, and 
extraction stages. For example, in the stage of memory 
encoding, the activation areas of the dorsolateral prefron-
tal lobe mainly tend to the posterior and lateral regions 
[80], while in the delayed memory stage, the activation 
areas of the dorsolateral prefrontal lobe mainly tend to 
the anterior and central regions [81, 82]. In our previous 
MCI brain network research based on EEG, we found 
that the differential brain network nodes activated dur-
ing the memory encoding stage were mainly located in 
the frontal lobe FZ and parietal lobe PZ, which is differ-
ent from the core nodes in the memory extraction stage 
in current research [83]. Given the scarcity of research 
on WM deficits in MCI through EEG, it remains uncer-
tain which stage’s core node exerts a more significant 
influence. Therefore, we aspire for subsequent studies to 
ascertain the importance of our identified targets, partic-
ularly through the lens of electrical stimulation interven-
tion. Such research could furnish more reliable evidence 
to bolster clinical interventions for MCI.

At present, behavioral performance data derived from 
WM paradigms have not yet become the primary basis 
for clinical diagnosis. Instead, they serve as supplemen-
tary tools, or as indicators for further investigation in 
cases where individuals exhibit pronounced deviations 
through the current WM paradigms. While the WM par-
adigm holds certain value and promise in clinical appli-
cation, ongoing research and refinement are essential 
to enhance its utility and diagnostic accuracy in clinical 
practice. Meanwhile, the correlation between EEG elec-
trodes is high, and there may be some systematic errors 
in using brain network data for analysis. In the follow-up 
work, fMRI and other measurement methods can also 
be added to verify the rationality of the current results. 
Further, at present, the dynamic network of subjects 
is based on the superposition of trials at a single time 

point. However, the memory retrieval stage of WM tasks 
involves complex cognitive processes such as attention, 
recognition, and decision-making. Tracking and analyz-
ing the characteristic features of each subject at different 
time windows based on trial-by-trial can further obtain 
important and critical information. In future research, 
it may be necessary to introduce time window analy-
sis to capture the dynamic characteristics of behavioral 
changes, while considering many other aspects such as 
the trade-off between time resolution and noise, limita-
tions in window length selection, computational com-
plexity, etc., in order to more accurately and reliably 
reveal the dynamic activity of the brain. By increasing the 
number of experiments and tracking analysis at different 
trial-by-trial levels, we can gain a deeper understanding 
of behavioral patterns. Furthermore, in research, we can 
emphasize the diversity within and between disciplines 
through interdisciplinary collaboration, diverse sample 
selection, and other methods to improve the universality 
and applicability of the results. Finally, our current results 
are based on the horizontal comparison of the WM pro-
cessing mechanism of MCI and NC. For the subjects, a 
longer-term follow-up and follow-up are needed to verify 
the previous results.

Conclusion
MCI patients had significant WM impairment. Mean-
while, the WM disorder of MCI is associated with abnor-
mal dynamic brain network patterns during the memory 
retrieval stage. Behavioral data in the low load WM task 
paradigm and abnormal electrophysiological signals in 
the left prefrontal (FC1) and right occipital lobes (PO8) 
may be more conducive to distinguish MCI. These find-
ings are of great significance for improving our under-
standing of cognitive processes, revealing cognitive 
mechanisms, predicting cognitive performance, and 
applying them to cognitive interventions.
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