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Abstract

Robotic technology is expected to transform rehabilitation settings, by providing precise, repetitive, and task-specific
interventions, thereby potentially improving patients’ clinical outcomes. Artificial intelligence (Al) and machine learn-
ing (ML) have been widely applied in different areas to support robotic rehabilitation, from controlling robot move-
ments to real-time patient assessment. To provide an overview of the current landscape and the impact of Al/ML

use in robotics rehabilitation, we performed a systematic review focusing on the use of Al and robotics in rehabilita-
tion from a broad perspective, encompassing different pathologies and body districts, and considering both motor
and neurocognitive rehabilitation. We searched the Scopus and IEEE Xplore databases, focusing on the studies involv-
ing human participants. After article retrieval, a tagging phase was carried out to devise a comprehensive and easily-
interpretable taxonomy: its categories include the aim of the Al/ML within the rehabilitation system, the type of algo-
rithms used, and the location of robots and sensors. The 201 selected articles span multiple domains and diverse aims,
such as movement classification, trajectory prediction, and patient evaluation, demonstrating the potential of ML

to revolutionize personalized therapy and improve patient engagement. ML is reported as highly effective in predict-
ing movement intentions, assessing clinical outcomes, and detecting compensatory movements, providing insights
into the future of personalized rehabilitation interventions. Our analysis also reveals pitfalls in the current use of Al/
ML in this area, such as potential explainability issues and poor generalization ability when these systems are applied
in real-world settings.

Keywords Artificial intelligence, Deep learning, Patient assessment, Physical therapy, Cognitive, Gait, Movement,
Trauma, Stroke, Sensor

Background

Rehabilitation refers to a multidisciplinary approach
aimed at restoring, improving, or maintaining an individ-
ual’s physical, cognitive, emotional, and social function-
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patient-centered approach that considers the physical,
psychological, and social dimensions of recovery. Tradi-
tionally, rehabilitation has been classified into two main
categories: motor and cognitive rehabilitation. Motor
rehabilitation primarily focuses on restoring physical
functioning and mobility, while cognitive rehabilitation
targets cognitive processes such as memory, attention,
and executive functions.

Despite the beneficial effects of rehabilitation, tra-
ditional rehabilitation approaches suffer from several
limitations [2], such as high clinical demand [3], a clin-
ical-centered model of rehabilitation [4], and limited
adaptability to patients’ needs and characteristics [5].

In recent years, technological advances have overcome
some barriers to the implementation of rehabilitation.
For example, telerehabilitation can improve accessibility
[6] and digital technologies can improve compliance and
monitoring of home exercise [7].

Among the currently available technologies, robotics
has arguably had the most transformative impact on how
rehabilitation is provided. Indeed, robotic neurorehabili-
tation addresses the major challenges of traditional reha-
bilitation by offering precise, repetitive, and task-specific
interventions, enhancing the potential for neurorecov-
ery [8]. These devices are often equipped with sensors to
monitor and adapt to patients’ performance, facilitating
personalized and adaptive rehabilitation regimens [9].
Furthermore, sensors allow to monitor different physi-
ological signals, thus providing an objective, operator-
independent, and measurable assessment of the patient
both to design a proper rehabilitation plan spanning mul-
tiple sessions and to monitor the rehabilitation treatment
adapting it while the single session is being performed
[10]. Interestingly, the application of robotic devices has
been quite pervasive and with a broad scope, as their
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application to several different conditions, such as stroke
and autism [11] demonstrates.

More recently, the integration of artificial intelligence
(AI) and machine learning (ML) into robotic rehabilita-
tion is bringing forth a wide range of opportunities to
address the shortcomings of traditional approaches. The
rationale for integrating Al into robotic rehabilitation lies
mainly in the need for more personalized, dynamic, and
responsive interventions [12]. Al algorithms, with their
ability to analyze real-time data, adapt to individual pro-
gress, and optimize therapeutic protocols, address the
limitations of traditional rehabilitation approaches. This
combination of Al and robotics offers a synergistic plat-
form for enhancing clinical outcomes [13].

In this work, our objective is to overview the exist-
ing landscape of AI/ML usage in robotics rehabilitation
encompassing various rehabilitative settings, ranging
from motor to cognitive rehabilitation, thus highlighting
trends and gaps in this field. In particular, we are inter-
ested in how AI/ML is embedded in robotics assistive
devices that were developed and/or tested on human
subjects, and what are the state-of-the-art performances
across various tasks.

Related work

Some previous reviews have focused on the use of Al and
robotics in rehabilitation. In Table 1 a summary of the
characteristics of these reviews is reported, together with
the ones of our study.

Three previous reviews [14—16] focused specifically
on robotics and Al. However, these reviews did not
perform a systematic analysis of the literature and/or
are related to a single specific domain, e.g. upper limb
[15] or cognitive [17], or to specific rehabilitation set-
ting, e.g. occupational rehabilitation [14]. The review

Table 1 Key characteristics of previous relevant reviews and our study

Ref Clinical Cognitive Motor Specific focuson  Systematic Number
conditions >2 Al/ML of
papers
Fong etal, 2020 [14] No No Yes Yes No 76°
Aietal, 2021 [15] No No Yes Yes No 27
Huo et al, 2021 [3] Yes No Yes No No 75°
Denecke and Baudoin, 2022 [16] Yes Yes Yes Yes No 93?
Rahman etal,, 2023 [18] No Yes Yes Yes Yes 48
Sumner et al., 2023 [19] Yes No Yes Yes Yes 28
Zhang et al, 2023 [21] Yes Yes Yes No No 9287
Yuan et al. 2023 [17] Yes Yes No No Yes 47
Mennella et al,, 2023 [20] Yes No Yes Yes Yes 35
Our study Yes Yes Yes Yes Yes 201

?inferred by counting references in the bibliography of the paper
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by Huo et al. [3] is not focused specifically on robotics
and machine learning but on technologies in general.
Moreover, it addresses only motor rehabilitation. Three
of the related previous reviews are indeed systematic
[18-20] and included 48, 28 and 35 studies respec-
tively. The review by Rahman et al. [18] is exclusively
focused on stroke while the review by Sumner et al.
[19] is not specifically addressing robotics but, more
broadly, technology in general and addresses only phys-
ical rehabilitation. Mennella et al. [20] conducted a sys-
tematic review of the usage of Al to specifically support
remote rehabilitation. However, no previous studies
have systematically examined the broad usage of Al in
robotic-assisted rehabilitation. Furthermore, none have
specifically focused on on the reported performance of
Al across various rehabilitative-related tasks, which is
crucial to support the development of new methods.

Aim and contributions
To the best of our knowledge, this is the only system-
atic review that analyzes how AI and ML are currently
exploited in robotics rehabilitation, spanning multiple
diseases. Our review is not focused on a specific medi-
cal domain or body district but spans broadly across
domains. Moreover, we did not consider only motor
rehabilitation, but we also address neurocognitive reha-
bilitation, in light of the novel concept of an integrated
neuromotor rehabilitation paradigm. The aim of our
work is to provide a broad and comprehensive overview
of the current state of integration of ML into robotic
assistive devices targeted at rehabilitation.

In particular, the main contributions of our review
are:

+ We classify and discuss the different Al algorithms
employed by robotic devices, according to the spe-
cific and well-established taxonomy of the ML field;

« We analyze the state-of-the-art of AI/ML in rehabili-
tation robotics, highlighting current reported perfor-
mance.

+  We dedicate specific attention to the explainability of
AT algorithms for rehabilitation robotics;

Additionally, we discuss robotics coupled with inte-
grated sensors and/or wearable sensors for patients’
assessment and evaluation; to achieve the aforemen-
tioned contributions, we focus on Al-enabled robotics
for rehabilitation across several medical domains and dis-
tricts providing a comprehensive overview of the field;

This review may support researchers by summarizing
AI/ML use and performance to support the development
and implementation of robotics-assisted rehabilitation.
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Methods

Search strategy

A literature search was conducted in IEEE Xplore
(https://ieeexplore.ieee.org/Xplore) and Scopus (https://
www.scopus.com/) databases on October 26th, 2023.
An advanced search was implemented in each electronic
database concerning AI/ML methods applied in the reha-
bilitation robotics context. We used the same search
string for IEEE Xplore and Scopus, with the only differ-
ence due to the specific syntax required by the two data-
bases. The queries performed are reported in Table S1.
Each query has 3 components, combined with a logi-
cal AND operator. One component captures the AI/ML
context, where we outlined the different synonyms usu-
ally employed in this field, as well as explicit mentions to
specific AI/ML algorithms, such as “random forest” or
“neural network” The second components represent the
rehabilitation concept nuances, and the third component
is the robotics aspect.

Article selection and screening process
The article selection process was based on PRISMA
guidelines [22] and is represented in Fig. 1.

We removed duplicated articles and those not writ-
ten in English. Titles and abstracts were screened by 5
reviewers with Abstrackr (http://abstrackr.cebm.brown.
edu), a semi-automated tool that allows reviewers to
independently screen abstracts retrieved [23, 24]. Each
record was screened by one reviewer independently, with
records assigned randomly. This first screening was per-
formed to filter out papers that did meet simple exclu-
sion criteria, verifiable from the abstract itself, such as
reviews, conference proceedings and articles presenting
prototypes. Subsequently, full-text screening was con-
ducted by the 5 reviewers according to the inclusion and
exclusion criteria for eligibility outlined below.

The inclusion criteria were the following: (i) articles
describing the use of Al and ML for robotic-assisted
rehabilitation; (ii) articles with specific applications in
health; (iii) articles where a physical device is presented/
discussed, (iv) articles involving human subjects (healthy
individuals or patients) for system development and/or
validation.

The exclusion criteria were the following: (i) articles
that describe a generic robotics Al system without an
explicit application in rehabilitation; (ii) conference
proceedings, as well as tutorials and conference pan-
els; (iii) articles describing systems that are developed/
validated only on simulated data; (iv) the system devel-
opment involved less than 5 human subjects; (v) arti-
cles describing systems based on sensors only (without
an actual robot); (vi) related to surgery; (vii) related to
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to be used within rehabilitation exercises.

Tagging strategy

To devise a taxonomy of ML for rehabilitation robot-
ics, we assigned different tags in various categories
to the selected papers. These tags encompass differ-
ent relevant aspects, outlined in Table 2. Each tag was
assigned using the Zotero reference manager (https://
WWW.zotero.org).

A total of 201 papers met the inclusion criteria and were
included in this review (Fig. 1). In the following we ana-
lyze the papers in depth, leveraging the assigned tags to
categorize articles and provide further insights. Note
that, even within the same tag type (listed in Table 2), a
paper may have been labeled with more than one value
per tag. The current section has been organized accord-
ing to the most prevalent aims (see aim tag in Table 2
and Fig. 2) identified in our review, in order to give better
structure to the presentation of the results, and organize
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Tag Description Examples of possible values
Aim Aim of ML within the proposed rehabilitation robotics Trajectory prediction, movement classification, person-
system alized rehabilitation
Algorithm type Specific type of Al/ML used Logistic_regression, neural_network
Input data Type of the input data to the AI/ML Anthropometric_data, clinical_data, sensor_data_from_
robot
User User of the system Patient, rehab_professional

Localization of the robot
Localization of the sensors
Disease type

Settings

Domain

Rehabilitation system constraints

The placement of the robot

Placement of sensors

Type of the disease/prognosis specifically reported
Setting where the rehabilitation sessions are performed
Domain of the rehabilitation

Whether the rehabilitative system is stationary (i.e. large
device and/or connected to energy net)

Upper_limb, hand, lower_limb, head

Upper_limb, hand, lower_limb, head

Leg_injury, stroke

Inpatients, outpatients, at home, healthy individuals
Upper_limb, lower_limb, cognitive

stationary, portable

Assess
patient
participati

patient
motivation

Robot
control
Emotion
recognitio

Compens
ation
detection Personaliz
ed
rehabilitati

on

Fig. 2 Most prevalent aims for which Al/ML is used in rehabilitation robotics
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them in a taxonomy of uses of ML in robotic-assisted
rehabilitation. The complete list of retrieved papers,
along with their tags, is reported in the Supplementary
File.

We identified 20 different aims of the AI/ML systems
embedded in robotics rehabilitation (Fig. 3a). Here, we
comment on the most prevalent ones. A good propor-
tion of the screened papers (19%) used AI/ML to clas-
sify upper (UL) and/or lower lib (LL) movements. Most
papers (47%) employed AI/ML to control the robot itself
in various ways: by predicting user intention and move-
ment trajectory [25, 26], by learning the arm support
needed during training in a personalized and adaptative
setting [27, 28], by implementing supervised [29-34],
regression-based [35-43], and reinforcement learning-
based controllers [44]. ML can also control the robot by
modulating stiffness [45], regulating synergies in robotic
hands [46], predicting force from EMG signals [47], joint
angles [48-52] and torque [53-56], or by compensating
for dynamic interactions [57]. Exoskeleton control can
be achieved by generating personalized gait trajectories
through Neural Network (NN) [58] or Gaussian pro-
cesses [59]. Control of a hip exoskeleton by predicting
ground reaction forces and moments through NN, Sup-
port Vector Machines (SVM) and Random Forest (RF)
algorithms was proposed by [60], while control of an
upper limb exoskeleton based on voice commands and
recurrent network (RNN) was proposed in [61]. Robot
control can be driven by user intention from EEG [62—
65], by predicting movement-based EMG signals [66—68]
or based on kinematics features derived from robots and
Inertial Measurement Unit (IMU) [69]. NNs are particu-
larly implemented to predict end-effector orientation
from joint angles [70]. Robot control can greatly sup-
port mirror therapy, when one side of the patient is more
affected by disability in comparison with the other side
[71] robotic mirror therapy (RMT) transfers the motion
of the healthy limb (HL) to the impaired limb (IL), in
which a robot interacts with and assists the IL to mimic
the action of the HL to stimulate the active participation
of the injured muscles [72]. [73] uses NN to control the
impaired lower limb in hemiplegic patients.

Movement classification

A range of 29 studies performed supervised ML to iden-
tify hand gestures [74—79], manual tasks [80—82] grasp-
ing [83-85], and finger movement [86]. In Table S2, we
report the complete list of papers using AI/ML to pre-
dict hand movement, along with the number of subjects
involved and the performance reported by the authors,
often in terms of accuracy. For instance, authors in [87]
implemented a SVM to recognize a set of grasp ges-
tures based on input data from the SCRIPT exoskeleton
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to predict the trajectory of the robot. The system was
trained and tested on 10 healthy and 8 stroke subjects.
Notably, the recall of the SVM in healthy individuals was
91% on average, while the same metrics decreased to 75%
in stroke patients. A decrease in performance between
healthy subjects and amputees was reported also by [88]
(90% of accuracy vs 68%), where authors implemented
a k-Nearest Neighbors (k-NN) to classify 7 different
gestures trained on EMG signals. Also in [89] authors
implemented a system for grasp prediction, with the
aim of controlling a robotic arm based on EMG signals.
In this case, data from 5 healthy subjects were collected
to train and test a RF, that showed 92% accuracy, in line
with the one reported in [87] for healthy subjects. These
studies focused on different hand movement classes for
prediction: for instance, in [90] six different hand motion
patterns were predicted (hand closing, hand open-
ing, thumb, index and middle fingers closing and open-
ing, middle, ring and little fingers opening and closing),
while in [91-93] authors binary predict whether the sub-
ject wearing hand exoskeleton is opening or closing the
hand. In other works, grasping with objects interaction is
shown [94]. As the predicted classes vary across studies,
it is difficult to compare performance results in an unbi-
ased way. Four studies evaluated the performance both
online (i.e. when the subjects’ signals are collected in real-
time and the deployed ML model is exploited for predic-
tion in real-time) and offline [78, 95-97], all reporting a
decrease in performance in the offline settings in com-
parison with the online settings, even up to 7% in accu-
racy (Table S2). 6 studies trained and/or tested their
classification system specifically on patients, and not only
on healthy individuals, such as stroke patients [87, 98],
amputees [88, 94] and children with autism [99]. 21 stud-
ies exploited as input for the ML the EMG signals, while
3 of them used EEG signals. [100] compared the accuracy
of an EMG-trained NN with an EEG-trained NN, finding
that the EMG-based classifier has higher performance
(Table S2). 12 studies compared multiple ML classifiers.
SVM is selected as the classifier in 16 studies, while k-NN
in 6. NNs, Multilayer Perceptrons (MLP) and convolu-
tional neural networks (CNN) are employed in 11 cases
each. Temporal Convolutional Network (TCN) was used
by [101].

15 studies investigated supervised ML approaches to
identify specific arm gesture [102, 103] extensions [104,
105], wrist [106, 107] and elbow movement (Table S3).
For instance, [108] developed a NN able to predict shoul-
der and elbow position thus discriminating flexion, pro-
nation, grasping, etc. The input of the model was EMG
signals, and the performance was recorded both on
healthy subjects and on patients with central cord syn-
dromes (CCS). Also in this case, as for the hand gesture
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recognition studies [87, 88] the authors reported a strong
decrease in the performance of their method, which was
initially trained on healthy individuals, on CCS patients,
as the accuracy on healthy subjects was 90%, while for
CCS patients it degraded to 68%. Two papers compared
the performance of offline vs online settings, confirming
a lower accuracy in the latter case [109, 110]. As for hand
recognition, the most popular algorithms were SVM and
NNs [111] (Fig. 3b).

Lower limb movement recognition is either referred
to specifically identifying gait, gait phases and patterns,
or to recognizing different action modes, such as sitting
or lying [112], turning in specific directions, start and
stopping walking [113] (Table S4). Many of the related
articles focused on gait recognition: gait recognition has
been treated as a multi-class classification [114—124] or
a binary classification problem [125-127], or even as an
anomaly detection problem using One Class SVM to
detect abnormal gait patterns [128]. In the first case, the
supervised model predicts the gait phases or whether the
subject is walking at level ground or ascending/descend-
ing stairs and ramps, and the predicted classes are either
stance or swing. As in upper limb recognition studies,
most of the wforks (92%) trained and tested the ML on
healthy subjects. [126] tested a Logistic Regression (LG)
for movement recognition on 10 healthy participants
and 3 stroke patients, finding a decrease in accuracy of
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around 5% on patients. A strong decrease in performance
between online and offline settings is also reported [127,
129]. While for upper limb movement prediction, the
most prevalent ML input type is EMG signals [130], for
lower limb kinematics data, pressure and joint angles are
also exploited. [111] demonstrated that the combination
of EMG signals and joint angles as input of the model
leads to an increase in performance in comparison with
models trained on EMG signals alone. SVM and NN
are the most used algorithms for lower limb movement
recognition.

Movement trajectory prediction

Table S5 reports the studies where AI/ML is used to
predict a movement trajectory. In 7 cases, the region of
interest of the robot was the lower limb [131-138] while
in 9 cases the aim was to predict the trajectory of the
moving upper limb [139-144]. Since trajectory predic-
tion is a regression problem, most studies evaluated the
performance in terms of Mean Squared Error (MSE)
computed between the true trajectory and the predicted
trajectory. Deep learning models were the most used for
this specific aim, and many works employed RNNs such
as LSTM. Input data vary from anthropometric features
combined with joint angles [145] or gait features [134,
135] to images [132, 139] and EMG [140]. Notably, none
of the selected papers trained or tested the algorithm on
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patients, but only on healthy individuals, except for [146].
Similarly to the case of UL and LL movement classifica-
tion, [147] reported decreased performance in the online
setting compared to the offline one.

Patient assessment during or after rehabilitation

A variety of studies (19) used ML to assess patients dur-
ing or after the rehabilitation session (Table S6). [120]
designed a robotic walker able to discriminate gait
asymmetries. [148] proposed a fuzzy NN to predict
upper limbs levels of motor ability to evaluate rehabili-
tation outcomes without the need of a therapist. ML is
also applied to directly predict relevant clinical scale. In
[149], an eXtreme Gradient Boosting model (XGBoost)
is trained to predict a set of popular clinical evalua-
tion measures, in particular, the 6-min walk distance
(6MWD) and the Fugl-Meyer assessment lower-limb
sub scale (FMA-LE), of stroke patients. The 6MWD
test is commonly conducted to assess functional exer-
cise capacity, measuring the distance (in meters) that a
patient can walk over a period of six minutes. The Figl-
Meyer Assessment is a stroke-specific scale to measure
impairment over five different domains, including motor
and sensory functioning, balance, joint range motion and
joint pain. The Al system takes as input the gait param-
eters and joint torque and it was tested in a clinical trial
with 66 stroke patients. [150] developed an ensemble
of NN models to predict various clinical scales, includ-
ing Fugl-Meyer, from kinematics and kinetics measure-
ments taken from the robot. The system was trained on
208 stroke patients and tested on data from the same
cohort. Yet, we cannot compare the results with [149],
since the performance metrics reported are different
(MSE vs R2). Also in [151], EMG signals are the input of
a network that predicts the FMA and the Modified Ash-
worth Scale (MAS). The system was trained and tested
on 29 stroke patients, and evaluated in terms of cor-
relation between the ML-generated prediction and the
clinical scores computed by a therapist. Barthel index
predicted from clinical characteristics and rehabilitative
session assessment of post-stoke patients was proposed
by [152], while [153] trained ensemble NNs to predict the
Chedoke-McMaster scale in stroke patients. [154] used
different ML algorithms to predict clinical evaluations
of a rehabilitative exercise in stroke patients, finding that
the most performing algorithm in terms of accuracy was
k-NN. [155] and [156] applied SVM and k-means on tor-
ques and angular positions of paralyzed wrists, collected
during the rehabilitative exercises performed by patients
to predict the Brunnstrom stage, a clinical score describ-
ing the development of the brain’s ability to move and to
reorganize after stroke. AI/ML can be used also to evalu-
ate patients in terms of energy expenditure, as in [157],
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when the authors trained LSTM and CNN to infer energy
expenditure during a rehabilitation session.

In [158] the authors employed logistic regression to
analyze the association between several clinically rele-
vant covariates, such as sex, age, BMI, history of diabetes,
hypertension, and poor motor function [158]. Notably,
in this work 205 patients with cerebral hemorrhage were
recruited and randomized into case and control groups:
the case group performed robotics rehabilitation of the
hand, while the control group was treated with stand-
ard care rehabilitation. Also in [159], a randomized
controlled trial was performed, with 50 subacute stroke
patients undergoing 4 weeks of treatment with the
GaitTrainer robot, and 50 patients treated with standard
care. The objective of the study was to identify the clinical
characteristics of patients who could benefit from robotic
walking training with respect to conventional walking
therapy. In [160], the authors used post-stroke patients’
clinical data and rehabilitative session data (such as speed
and force) from Lokomat, a wearable robot for lower
limb rehabilitation, to train different ML algorithms,
such as Decision Tree (DT), RF, and SVM and predict
rehabilitation outcome at the 12th rehabilitative session.
Authors found that the most important characteristic to
determine the outcome was body weight. An observa-
tional study on 55 stroke patients who performed robot-
ics-assisted rehabilitation trained a logistic regression
model to determine the most important factors towards
positive rehabilitation outcome, finding that gender and
Box and Block Test (BBT) score were the most impor-
tant covariates [161]. Also in [162] authors investigated
the importance of different clinical characteristics and
robot-related measures on rehabilitation outcomes for
stroke patients. Motor recovery after stroke using NN
and k-NN was proposed by [163], finding that time since
injury, baseline functional and motor ability may support
the identification of patients most likely to benefit from
the rehabilitation intervention. [164] used linear regres-
sion to detect the period of inactivity during patients’
rehabilitation sessions, which can serve as a proxy for
patients’ evaluation. Muscle recruitment was predicted
through MLP from kinematics data [165] in 7 patients
with cerebral palsy. Real-time audio-visual biofeedback
of the patient’s planar flexor recruitment was provided
during rehabilitation, thanks to an MLP prediction.

Prediction of patient intention

Twentyfour different works employed AI/ML to pre-
dict user movement intention (Table S7). In this case,
all the retrieved studies tested the approach on healthy
subjects, and none featured actual patients undergoing
rehabilitation. Most of them used EEG (7 cases) [166—
171] or EMG (9 cases) [172-178] as input signals. [179]
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predicted upper limb intention to move towards right
or left by using an SVM fed with optical brain function
imaging, while [180] exploited 3D skeletal angles from
Kinect. [181, 182] used IMU-derived signals and forces
and [183] exploited kinematics features to infer the inten-
tion to sit or stand, while [184] used trunk motion data as
input. [168] both predicted intention vs non-intention to
move, and the desired speed (fast vs slow). All the stud-
ies reported high accuracy, but only [166] tested the ML
models both offline and online, confirming a decrease in
performance in the online settings, as also reported in
studies predicting movement (see 3.1).

Personalized rehabilitation

Several studies (11) show that ML can also support per-
sonalized therapy (Table S8), by estimating motion and
model parameters [185] and the appropriate control
gains based on subject’s characteristics [186—188] or
by predicting a specific exercise [189]. [72, 190] imple-
mented a Support Vector Regression to estimate model
parameters of pelvic motion based on robotics-extracted
features. In [191], the authors implemented an ensemble
of LSTM and CNN to estimate personalized gait speed
and stride length from joint angles. In [192] reinforce-
ment learning algorithm is proposed to adapt movement
trajectory parameters to varying patient performance,
thus optimizing robot’s trajectory and stiffness. In [193],
a controller based on Gaussian Network is developed to
model the functional capability of subjects and to provide
a coherent task to challenge them. Personalized reha-
bilitation includes also approaches aimed at personal-
ized assessment (see Sect. "Patient assessment during or
after rehabilitation"), as in [194], where authors integrate
NNs with a rule-based model to assess the performance
of exercises for personalized post-stroke therapy. [195]
applied unsupervised clustering techniques to define task
motion based on patient’s trajectories.

Compensation detection

Four articles used ML to detect compensatory postures
or motions that can lead to suboptimal recovery out-
comes. In particular, [196] applied a multi-label k-Near-
est Neighbor classifier and a multi-label Decision Tree
classifier to detect compensatory postures in ten patients
with stroke. To this aim kinematics data collected by an
RGB camera and the OpenPose system were used. The
performance of the two classifiers was similar and they
could detect quite accurately (accuracy: 85%) some com-
pensatory postures. Forward trunk displacement and
trunk rotation were the easiest compensatory move-
ments to detect, followed by shoulder elevation. In [197]
motion compensation was detected by using pressure sig-
nals and applying an SVM algorithm. Experiments were
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performed in subjects with stroke both online and offline.
Good classification performance was obtained in both
offline (F1-score: 98.60%) and online (F1-score: 98.64%)
compensation analysis; in the online test, a rehabilita-
tion robot also provided an assistive force to patients to
reduce compensation thus decreasing trunk movements
during exercises. The same group applied an analogous
strategy to detect posture compensation in eight subjects
with stroke during an online task [198]. Also in this case
good performance (F1-score around 95%) was obtained.
In addition, the authors demonstrated the effectiveness of
reducing compensation by applying force feedback with
a robot or audio feedback using virtual reality. Finally,
in [199], compensation in patients with dyskinesia was
detected by using a trunk restraint belt, acquiring sSEMG,
angular displacement, and force, and applying Linear
Discriminant Analysis (LDA), k-NN and SVM classifiers.
SVM was the top-performing algorithm in detecting dif-
ferent types of compensatory motions (F1-score: 97.58%).
In [200] compensation detection was performed using
SVM and RNN on input data from Kinect.

Support patient motivation

Al and ML have also been used to support patient’s moti-
vation during robotic therapy. Four papers addressed
this aim. In [201], clinical data as well as data acquired
by the robot were collected while subjects with stroke
wore the SUBAR, a gait training robot, and performed
robot-assisted gait training. A neuro-fuzzy algorithm was
trained to provide the right verbal clue on the basis of
these collected data and provided good performances in
the testing phase (accuracy: 93.7%). [202] implemented
a modified version of the’Simon Says’ game, which has
the function of motivating patients, making therapies
more engaging. In particular, elderly subjects had to imi-
tate some exercises performed by the robot. The Kinect
was used to record subject’s positions and DT, KNN and
SVM were applied for posture classification. DT resulted
had higher performances in comparison with the other
algorithms in the classification task (accuracy: 99.61%).
In [203] the authors attempted to predict the desired
level of difficulty in order to increase the motivation of
the subject while performing a robot-assisted reaching
task. The prediction of desirable difficulty according to
the patient was done based on motor performance and
physiological metrics, applying a fuzzy NN approach. By
practicing the task at their desirable difficulties, subjects
reported lower required effort to complete the task. An
interesting application is reported in [204], where ML
was applied to predict the behavior of an infant towards
a robot. Data obtained by the Kinect were used to train
a DT, and then a Markovian model for robot control
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was developed where predictors were used to promote
action-based goals for the infants.

Assess patient participation

Patients’ participation in a robotic task is important
to increase the effect of the treatment. In [205] a lower
limb rehabilitation robot using joint torque sensors and
six-dimensional force sensors on the foot soles were used
to acquire force information. These signals were used to
train a hybrid quantum particle swarm optimization and
SVM algorithm. Data from 10 healthy volunteers per-
forming different difficulty training tasks were used to
predict both the level of participation and the task diffi-
culty for two other volunteers obtaining an accuracy of
80%. In [206] EEG signals were collected in healthy vol-
unteers and used to assess cognitive engagement during
the execution of an adaptive Go/No-Go paradigm while
interacting with the Bionik InMotion Arm rehabilitation
robot. A CNN was applied to predict the level of cogni-
tive engagement for two classes (cognitively engaged vs
disengaged) obtaining an accuracy of 88%, while [207]
compared SVM, Naive Bayes, RF and MLP for predicting
rest, clench, or attention based on EEG signals using data
from 5 healthy individuals and achieving performance
from 73% (RF) to 77% (SVM) of accuracy.

Emotion recognition

The emotional status of the patient can greatly affect
rehabilitation outcomes. ML and Al can support thera-
pists by predicting patient’s emotion during the reha-
bilitation exercise. [208] developed an SVM to predict 3
anxiety levels in patients with stroke using multimodal
physiological signals including EMG, ECG, skin conduct-
ance, and respiration. The model reached an accuracy of
around 80% in 12 stroke patients. Emotion recognition
in stroke was performed also in [209] where camera data
were obtained while the subjects performed rehabilita-
tion tasks with a hand exoskeleton. An SVM model was
applied for emotion classification reaching an accuracy of
86%. [210] applied a supervised artificial NN to classify
facial emotions acquired using infrared thermal images
of healthy individuals performing rehabilitation robotic
therapy integrated with games obtaining an accuracy of
92.6%. [211] developed a CNN for emotion recognition
while subjects with ADHD interacted with the humanoid
robot Pepper. The model was trained on a public dataset
and tested on 5 ADHD children, albeit the performance
achieved in the test was not reported in the paper.

Other notable aims for ML in robotics-assisted
rehabilitation

ML-based anomaly detection, whose aim is to identify
rare events, has been employed [212] to capture robotic
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prosthesis malfunctioning based on sensor data, with
the future goal of designing a fault detection system. In
particular, the authors applied the one Class SVM and a
Malanobis distance-based classifier.

Within the autism domain, [213] implemented an NN
to identify the patient playing with modular robotics tiles
based on how they interact with the tiles. The cohort
consisted of 7 children with different types of autistic
disorders.

In [214] authors explore how ML can support not only
the control of a robotic prosthetic arm but also the gener-
ation of vibrotactile feedback regarding the arm’s contact
with its workspace. The task performance of the ML-
based system on healthy subjects was significantly higher
in comparison with the purely reactive feedback from
the device. A similar attempt to leverage biofeedback has
been proposed in [165].

To demonstrate the effectiveness of the robot dur-
ing gait rehabilitation of children with cerebral palsy, a
Gaussian process regressor applied to functional near-
infrared spectroscopy (fNIRS) data was used to test
whether the assessed changes in the brain activity of
patients were associated with modifications in the motor
abilities [215].

ML can be also applied for fall detection during robotic
rehabilitation or for predicting balance loss. In [216] a
deep NN was applied to detect fall during the rehabili-
tation with a walking-aid robot. Force signals were used
as input for the model which obtained an accuracy of
98.8%. To avoid injury to the patients, [217] trained an
LSTM to predict early emergency stop during robotic
gait rehabilitation.

In [218] the authors implemented an LSTM that mim-
ics the therapist-patient interaction and the therapist’s
behavior to provide robotic assistance during trajectory
tracking. [219, 220] used NNs to estimate slope incline in
different terrains for a lower limb exoskeleton. [221] pro-
posed the use of SVM to predict the type of rehabilitative
session (active, passive or resistive) from EMG data. [222]
exploited several supervised models, such as Decision
Trees and k-NN to recognize speech for guiding therapy.

Discussion
With this systematic review, we described the current
usage of AI/ML in robotics-assisted rehabilitation.

We found that most of the retrieved works (146 stud-
ies, 72%) involved the participation of healthy individuals
for data collection, training, and testing. Only 55 studies
involved actual patients with a medical condition, mainly
stroke patients (see Supplementary File). Among these,
the median number of patients involved in the studies is
9 (with a value of 18 for the 75th percentile) highlighting
that validation studies for Al in robotics are still carried
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out on rather small patient cohorts. Studies using ML to
assess patient clinical status during/after rehabilitation
(Sect. "Patient assessment during or after rehabilitation")
were those reporting the higher number of patients, with
a median of 66 individuals. Few studies have recruited
more than 100 patients: [163] and [150] recruited 293
and 208 stroke patients respectively, [158] 205 patients
with cerebral hemorrhage on basal ganglia). Only one
study [99] was focused on 7 children with autism: here
the rehabilitative setup consists of a humanized robot
performing different hand gestures the children were
supposed to replicate.

36% of the studies did not explicitly explain the train-
ing and evaluation strategy adopted by the authors. The
cross-subject setting was adopted in 16% of the studies,
i.e. the data collected from a specific individual were used
exclusively in either the training or the test set. On the
contrary, in a non-cross-subject setting, multiple meas-
ures collected from a single participant may be assigned
randomly to the training and the test set, and it was
adopted in 48% of the studies. In this latter case, there
is the possibility that the ML model learns user-specific
characteristics to perform inference instead of rules that
can generalize well on data from new individuals. This is
especially true when using ML for movement classifica-
tion and trajectory predictions [223-225]. Among the
papers that carefully describe their training and testing
strategy, [69, 183, 215] adopted a Leave-One-Subject-Out
(LOSO) Cross Validation, where one subject is kept for
testing and the remaining for training iteratively. [132,
186] specifically, select a subset of individuals for train-
ing and a distinct subset for testing. Notably, none of
the retrieved papers explicitly stated that the TRIPOD-
AT checklist [226] for reporting clinical models based on
ML was followed. Only 9 studies (4%) openly shared their
data, and 4 studies (2%) made their code publicly avail-
able. As code and data were rarely shared, there was lit-
tle opportunity for the research community to reproduce
the results and implement new systems based on data
previously collected by other studies. Only four of the
analyzed papers performed case—control studies [203,
227].

Another relevant aspect regarding the performance
of ML models applied in rehabilitative settings emerged
from our review: all 8 studies that compared “offline” vs
“online” performance reported an important decrease
in performance in the latter case (see Supplementary
Tables). Decreases in performance were also reported
when the AI/ML was applied to patients, in comparison
with the performance on healthy individuals [87, 88].
These findings are of significant interest as they suggest
that the ML performance estimated during development
may relevantly underestimate the performance of the
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system during deployment and usage in clinical practice.
Notably, (Chowdhury et al. 2018) recognized the poten-
tial negative impact of dataset shifts and addressed it by
designing a specific ML classifier that can adapt its clas-
sification procedure when dataset shifts occur. There-
fore, we advocate for the implementation of strategies
for monitoring the performance over time, and detect
out-of-distribution samples [228-230]. Supplementary
Table S2-S8 show, for each study, the reported perfor-
mance of Al across different tasks (hand gesture recogni-
tion, upper limb movement recognition, gait prediction
and lower limb movement recognition, trajectory pre-
diction, patient intention prediction and personalized
rehabilitation). Relevant information, such as number of
subject, region of interest, and type of disease are also
reported.

Most of the AI/ML systems analyzed process input
data from sensors (Fig. 3c). Neural networks and deep
learning approaches are the most frequently applied
algorithms (Fig. 3b), representing the most employed
models to solve robot control tasks, in particular to con-
trol upper limb exoskeletons [67]. We further examined
whether simpler models were favored over more complex
algorithms, such as deep networks, in portable systems
where hardware limitations might restrict the feasibility
of running complex algorithms. When analyzing by reha-
bilitative system type (stationary vs. portable), we found
that deep networks were predominantly used across both
categories, irrespective of hardware constraints. How-
ever, simpler algorithms like decision trees appeared
more frequently in portable devices (12%) compared to
stationary ones (7%). Additionally, we stratified the analy-
sis based on whether the AI/ML system operated online
(i.e., during a rehabilitative session) or offline. Here, too,
we observed no significant differences in algorithmic
preferences between the two operational modes, poten-
tially indicating that even complex algorithms achieve
adequate runtime performance in both settings. While
deep networks often prove to be highly performing, their
intrinsic “black box” nature may hamper the transparency
and explainability of the predictions, which is a crucial
aspect of promoting trust in AI/ML and its adoption in
the medical domain, including rehabilitation. Trustwor-
thiness and transparency have been recently outlined
among the requirements for AI/ML medical applications
by the Al act, the first binding regulations of Al pro-
moted by the European Union.

This is also relevant in robotics applications where
the correct interpretation of Al algorithms may lead to
an improvement in human-robot interactions limiting
potential consequences of errors and providing human-
interpretable feedback to encourage human oversight of
rehabilitation technology. In our review, some studies
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have implemented explainable AI models to improve user
feedback in robot fault recovery [231, 232], while very
few studies have addressed the problem of explaining
the output of the model in the field of robotic neurore-
habilitation. For example, in [233] an interpretable deep
learning model was applied to decode neural activity pre-
ceding balance loss during standing with a lower-limb
exoskeleton, while in [234] an interpretable approach
based on Grad-CAM was used to predict balance loss
while wearing an exoskeleton using electroencephalo-
graphic signals. Interpretable-by-design models may also
be useful to highlight relevant prognostic factors, as in
[159], where the authors found that a patient’s reduced
autonomy was a negative prognostic factor for conven-
tional therapy, but not for robotic rehabilitation, by fit-
ting a binary logistic regression. Thus, for future research
in Al applied to robotic neurorehabilitation, there is the
need to focus on developing algorithms that are not only
well performing, but also interpretable. Interpretation
of ML models can improve clinicians’ confidence in Al
technologies, facilitating their adoption in clinical set-
tings. Explainability enables clinicians to understand the
rationale behind Al-driven decisions, facilitating a more
collaborative approach to patient care and enabling more
nuanced interventions. Current Al-based rehabilitative
systems often lack inclusivity, with underrepresented
populations, such as pediatric, geriatric, or minority
groups, being insufficiently addressed. To bridge this
gap, tailored Al models should be developed and vali-
dated for specific subgroups to ensure their effectiveness
and safety. For example, algorithms trained on adult data
should be systematically adapted and tested for pedi-
atric populations to prevent performance degradation.
Data diversity could be achieved also thanks to global
collaborations and data-sharing initiatives. Additionally,
lack lack of standardized evaluation metrics and openly
available benchmarks limits the comparability and repro-
ducibility of Al-driven systems. Developing open-access
benchmarks specific to rehabilitation robotics would
enable researchers to evaluate their algorithms against
well-defined standards.

Integrating AI technologies into clinical practice
demands careful consideration of various ethical aspects.
Among these, safeguarding data privacy is essential to
uphold patient autonomy and ensure the ethical use
of sensitive information [235]. However, this impera-
tive often conflicts with the principles of open science,
which advocate for data sharing in open repositories to
promote research transparency and reproducibility. Bal-
ancing privacy concerns with open science standards
thus represents a complex challenge that the field must
address [236]. Another ethical consideration lies in miti-
gating automation bias—the tendency to over-rely on
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Al outputs without critical evaluation. While Al offers
substantial potential to support clinicians across diverse
tasks, it is essential to foster a culture of critical engage-
ment with Al recommendations to prevent undue reli-
ance and potential errors. By training clinicians to use Al
as a support tool, rather than a definitive decision-maker,
the risk of automation bias can be minimized, thereby
enhancing both patient safety and clinical outcome [235].
By proactively tackling these issues, the adoption of Al
in rehabilitation can proceed responsibly, with a focus
on building trustworthy and equitable healthcare solu-
tions. Future research should explore several key areas
to advance Al-based rehabilitative systems. One criti-
cal area is the generalizability of these systems across
diverse patient populations, ensuring they are adapt-
able and effective for varying demographics and clinical
needs. Additionally, integrating Al-driven rehabilitation
tools with Electronic Health Records (EHRs) and other
clinically relevant repositories could enable a more com-
prehensive, multimodal analysis of patient data. Such
integration would facilitate a holistic view of patient
health, improve the continuity of care, and enhance per-
sonalized treatment strategies. These future directions
hold the potential to broaden the scope and impact of Al-
enhanced rehabilitation across diverse clinical contexts.

Conclusion

We have performed a systematic review to outline the
current landscape of AI/ML usage within robotics-
assisted rehabilitation, by analyzing different dimensions,
such as the aim of the AI/ML system, the algorithm
types, and input data types. For specific groups of papers,
such as those using AI/ML to classify hand gestures, and
arm movements, or to predict trajectories, we also pro-
vide reference performance metrics as Supplementary
Tables, in order to enable researchers in the field to eas-
ily retrieve current state-of-the-art performance, and
benchmark their own work.

Despite the prevalence of use of AI/ML in this field,
we found several issues that still need to be addressed.
Only a minority of studies involve actual patients, with
the majority of evaluations focusing instead on healthy
volunteers. Children are significantly underrepresented,
appearing in only 3% of the studies. This lack of repre-
sentation makes it difficult to rule out, or even quantify,
significant deterioration of AI/ML performance when
technologies tested on adults are applied to a pediat-
ric population. Furthermore, there is a lack of standard
procedures for training and testing the AI/ML systems
that hampers the comparison of predictive results across
studies in the rehabilitation field. Limited sharing of data
and code hinders open science and reproducibility, as
well as easy design and execution of follow-up studies
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by independent investigators. Even though Deep Learn-
ing is one of the most applied techniques in this field, we
posit that better integration of XAI methods should be
promoted. Additionally, poor generalization ability often
emerged: systems to monitor the performance over time
are therefore needed to promote safe application within
clinical practice.
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