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Abstract 

Neuromusculoskeletal injuries including osteoarthritis, stroke, spinal cord injury, and traumatic brain injury affect 
roughly 19% of the U.S. adult population. Standardized interventions have produced suboptimal functional out-
comes due to the unique treatment needs of each patient. Strides have been made to utilize computational models 
to develop personalized treatments, but researchers and clinicians have yet to cross the “valley of death” between fun-
damental research and clinical usefulness. This article introduces the Neuromusculoskeletal Modeling (NMSM) 
Pipeline, two MATLAB-based toolsets that add Model Personalization and Treatment Optimization functionality 
to OpenSim. The two toolsets facilitate computational design of individualized treatments for neuromusculoskeletal 
impairments through the use of personalized neuromusculoskeletal models and predictive simulation. The Model 
Personalization toolset contains four tools for personalizing 1) joint structure models, 2) muscle–tendon models, 3) 
neural control models, and 4) foot–ground contact models. The Treatment Optimization toolset contains three tools 
for predicting and optimizing a patient’s functional outcome for different treatment options using a patient’s person-
alized neuromusculoskeletal model and direct collocation optimal control methods. Support for user-defined cost, 
constraint, and model modification functions facilitate simulation of a vast number of possible treatments. An NMSM 
Pipeline use case is presented for an individual post-stroke with impaired walking function, where the goal was to pre-
dict how the subject’s neural control could be changed to improve walking speed without increasing metabolic cost. 
First the Model Personalization toolset was used to develop a personalized neuromusculoskeletal model of the sub-
ject starting from a generic OpenSim full-body model and experimental walking data (video motion capture, ground 
reaction, and electromyography) collected from the subject at his self-selected speed. Next the Treatment Optimiza-
tion toolset was used with the personalized model to predict how the subject could recruit existing muscle synergies 
more effectively to reduce muscle activation disparities between the paretic and non-paretic legs. The software pre-
dicted that the subject could increase his walking speed by 60% without increasing his metabolic cost per unit time 
by modifying existing muscle synergy recruitment. This hypothetical treatment demonstrates how NMSM Pipeline 
tools could allow researchers working collaboratively with clinicians to develop personalized neuromusculoskeletal 

*Correspondence:
Benjamin J. Fregly
fregly@rice.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12984-025-01629-5&domain=pdf


Page 2 of 28Hammond et al. Journal of NeuroEngineering and Rehabilitation          (2025) 22:112 

models of individual patients and to perform predictive simulations for designing personalized treatments that maxi-
mize a patient’s post-treatment functional outcome.

Introduction
Approximately 19% of the U.S. adult population is 
afflicted by a movement impairment caused by stroke, 
osteoarthritis, traumatic brain injury, limb amputation, 
cerebral palsy, Parkinson’s disease, or spinal cord injury 
[1–3]. In addition to the physical challenges caused by 
a movement impairment, these individuals are more 
likely to experience increased health care costs, lower 
work productivity, a higher risk of developing heart 
disease or diabetes, a reduction or loss of independ-
ence, and a decreased quality of life [1, 4]. At present, 
treatment of these life-altering impairments typically 
involves selection of a standardized treatment based 
on subjective clinical assessment rather than design of 
a customized treatment based on objective evidence-
based methods. Consequently, existing treatments for 
movement impairments do not address the unique clin-
ical situation and needs of the individual patient to the 
extent that they could, and should.

Not surprisingly, the standardized treatment para-
digm is often unable to achieve the level of post-
treatment functional recovery that patients desire and 
expect. The percentage of patients who are dissatisfied 
with their functional outcome following a standardized 
treatment supports this viewpoint. For those who expe-
rience stroke, satisfaction with functional outcome is 
closely tied to ability to return to a pre-stroke level of 
movement function [5]. However, stroke patient satis-
faction with mobility improvements generally declines 
after hospital discharge [5], with only 65% of individu-
als post-stroke recovering the ability to walk [6]. Even 
then, they tend to walk at a slow self-selected speed 
with an asymmetric gait pattern that is less efficient 
metabolically than for healthy individuals [6–8]. Fur-
thermore, 20% of stroke survivors remain dependent on 
others to perform activities of daily living (ADLs) [9]. 
For those with physician-diagnosed arthritis, roughly 
44% have functional limitations that affect their abil-
ity to perform ADLs [10]. For those who receive a total 
knee replacement (TKR), the best predictor of post-
surgery patient satisfaction is functional outcome [11]. 
However, 22% of TKR patients are dissatisfied with 
their functional outcome one year after surgery [12], 
while 16 to 30% are dissatisfied with their ability to per-
form specific ADLs [13]. For those who receive a total 
hip replacement, 7% are dissatisfied with their func-
tional outcome [14], with expectations for improved 
walking and stair climbing ability not being met in 

over 30% of patients [15]. For those who receive open-
ing wedge high tibial osteotomy surgery, 22% are dis-
satisfied with their outcome, primarily due to unmet 
expectations for their post-surgery ability to perform 
functional activities [16]. For those with cerebral palsy 
(CP), 33% do not improve walking speed as a result of 
multi-level orthopedic surgery [17], while 21% of par-
ents of children with CP do not feel that their child’s 
orthopedic surgery was worth the time, effort, pain, 
and cost [18]. More than 50% of children with CP who 
undergo multi-level surgeries do not see improve-
ments in their gait patterns [19]. For those with lower 
limb amputation, between 12 and 32% cannot perform 
desired ADLs with their prosthesis, while only 30% 
to 52% find the same ADLs very easy to perform [20]. 
Those with upper limb amputation use their prosthesis 
primarily for cosmetic rather than functional reasons, 
with the percentage of individuals who rate their upper 
extremity prosthesis as beneficial for performing vari-
ous ADLs ranging from 5% to only 25% [21]. These sta-
tistics across a myriad of clinical conditions that impair 
movement highlight the need for a better treatment 
design paradigm to help a larger percentage of patients 
recover their desired level of post-treatment function.

One possible way to improve treatment design and 
thus functional outcomes for individuals with movement 
impairments is to employ engineering design optimiza-
tion methods that utilize physics-based computational 
models. Physics-based computational models have an 
advantage over “black box” machine learning models 
since they extrapolate better to situations outside the 
boundaries of the training data, which is where opti-
mal solutions often lie. Engineering design optimization 
methods have dramatically improved function and reli-
ability of commercial products in numerous industries 
including automotive, aerospace, farming, construction, 
and structural engineering, among others [22–27]. Using 
these virtual prototyping methods, engineers can evaluate 
countless designs–including highly novel ones–in a time- 
and cost-efficient manner to determine an optimal design 
for a given problem, thereby reducing or eliminating trial-
and-error design iterations performed on physical proto-
types. Researchers have already demonstrated the benefits 
of combining engineering design optimization with per-
sonalized models to develop effective personalized inter-
ventions for a small number of clinical problems. [28–33]

While a similar computational approach holds promise 
for designing personalized treatments for movement 
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impairments, at least three significant challenges must 
first be overcome for such an approach to become a 
reality. First, researchers must be able to personalize 
the neuromusculoskeletal computer models used in the 
computational treatment design process [34]. Published 
musculoskeletal modeling studies have typically used 
scaled generic models rather than models whose relevant 
characteristics have been personalized to a subject’s 
movement data [34]. This decision is understandable 
given the challenges of collecting the experimental 
movement (and possibly imaging) data needed for 
the model personalization process coupled with the 
challenges of performing the personalization process 
itself for any aspect of a model (e.g., joint functional 
axes). However, differences between patients with the 
same clinical condition are precisely what make the 
clinical treatment design process so challenging. Second, 
researchers must be able to perform the treatment design 
optimization process using a patient’s personalized 
neuromusculoskeletal model. Such a process requires 
performing repeated predictive simulations of patient 
function following different implementations of a 
planned intervention. To date, the majority of such 
simulations have been performed using “home brew” 
computational software [35–47], making it difficult 
for the broader research community to engage in the 
process, to repeat studies performed by others, and to 
transfer knowledge about the process to others. Third, 
researchers must have access to computational software 
that makes the model personalization and treatment 
optimization processes easy, repeatable, and transferable. 
While recent software advances such as OpenSim 
Moco [48] have made it possible to perform predictive 
simulations more easily, neither OpenSim [49, 50] nor 
Moco [48] provide means to personalize relevant aspects 
of a patient’s neuromusculoskeletal computer model or 
to use a personalized model to perform the treatment 
design optimization process.

Several existing musculoskeletal modeling software 
tools have sought to address these challenges to various 
degrees [51–58]. These tools primarily focus on 
personalizing the musculoskeletal model creation process, 
including personalizing bone geometry from medical 
imaging data, personalizing muscle attachment points 
on bones, and generating scaled generic musculoskeletal 
models using automated methods. The SimCP simulation 
platform, designed to predict post-surgery walking 
function for individuals with cerebral palsy, goes beyond 
other tools in several important ways [51]. It supports 
personalization of Hill-type muscle–tendon model 
properties, personalization of neural control properties 
using a muscle synergy structure, and prediction of the 
joint moment “capability gap” that would remain following 

implementation of a proposed surgical plan. Nonetheless, 
none of these tools can personalize multiple aspects of a 
patient’s neuromusculoskeletal computer model and then 
use the personalized model within a predictive simulation 
framework to design clinical interventions.

This article introduces the Neuromusculoskeletal 
Modeling (NMSM) Pipeline, a MATLAB-based software 
package that provides researchers and clinicians working 
together with state-of-the-art computational tools 
for designing effective personalized treatments for 
movement disorders. The software package is built on the 
foundation of the OpenSim musculoskeletal modeling 
software and adds two toolsets to OpenSim [49, 50]. The 
Model Personalization toolset uses patient movement 
data and gradient-based optimization to personalize 
four subcomponents of a patient’s neuromusculoskeletal 
computer model: 1) joint structure models, 2) muscle–
tendon models, 3) neural control models, and 4) foot–
ground contact models. The Treatment Optimization 
toolset uses a patient’s personalized model with direct 
collocation optimal control methods [35, 41, 48, 59–
62] to predict how the patient’s neural control and/
or anatomy should be changed, or how an external 
device (e.g., an exoskeleton) or implant should be 
designed and/or controlled, to maximize improvement 
in the patient’s post-treatment movement function. By 
emphasizing functionality, ease of use, flexibility, and 
computational speed, the NMSM Pipeline will hopefully 
accelerate involvement of the neuromusculoskeletal 
modeling research community in the computational 
design of clinically implementable personalized 
neurorehabilitation and surgical interventions.

The remainder of this article is outlined as follows. 
First, a design overview of the NMSM Pipeline is 
presented, including an overview of the philosophy and 
goals of the software and an introduction to the two 
included toolsets. Second, implementation details, design 
decisions, and important information for each tool are 
presented. Third, an example treatment design use case 
is provided including specifics about the use of each tool 
and final results. Fourth, a discussion section is included 
to provide information about future work, limitations, 
and access to the software.

Design overview
Philosophy and goals
The goal of the NMSM Pipeline software is to help 
neuromusculoskeletal modeling researchers engage in 
clinical research—and cross the valley of death [63], 
thereby moving neuromusculoskeletal modeling a 
significant step closer to becoming a clinically useful 
tool. To achieve this goal, the NMSM Pipeline uses a 
personalized medicine approach, where physics- and 
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physiology-based personalized neuromusculoskeletal 
computer models constructed from patient movement 
data are used to design personalized treatments for 
movement impairments [64]. Such impairments arise 
from clinical conditions like osteoarthritis, stroke, 
cerebral palsy, spinal cord injury, Parkinson’s disease, limb 
amputation, and even cancer. Because the open-source 
OpenSim [49, 50] and commercial Anybody [65] software 
commonly used for musculoskeletal modeling research 
lack the ability to personalize neuromusculoskeletal 
computer models to patient movement data, these 
software tools cannot currently be used to optimize 
treatments for individual patients. To overcome this 
critical limitation, the open-source NMSM Pipeline 
software uses MATLAB (The MathWorks, Natick MA) to 
build on the OpenSim foundation and provides two new 
toolsets—a Model Personalization toolset that facilitates 
the creation of personalized neuromusculoskeletal 
computer models, and a Treatment Optimization toolset 
that uses the personalized models to design personalized 
treatments that maximize a patient’s post-treatment 
movement function.

To develop these two new MATLAB-based toolsets, 
we defined a high-level software design philosophy. First, 
the NMSM Pipeline was designed to be both accessible 
for basic users and extensible for advanced users so that 
neuromusculoskeletal modeling researchers of all levels can 
benefit from it. Second, modeling and simulation methods 
were based on laws of physics and principles of physiology 
and neuroscience rather than on machine learning, since 
no training data exist for post-treatment movement 
conditions, and machine learning methods do not, in 
general, extrapolate well outside the boundaries of the 
training data. Third, existing OpenSim functionality and 
model entities were utilized to the fullest extent possible 
to avoid duplication. Fourth, NMSM Pipeline functionality 
was designed to have the “look and feel” of OpenSim so that 
those with experience using OpenSim can quickly become 
proficient using the Pipeline. Fifth, the NMSM Pipeline 
was designed to work with any OpenSim model, providing 
complete flexibility in the musculoskeletal anatomy and 
movement situations that can be modeled and simulated.

To achieve the goal of accessibility for basic users 
and extensibility for advanced users, we designed 
NMSM Pipeline tools to work using Extensible Markup 
Language (XML) settings files, similar to OpenSim. 
This approach allows users to run each NMSM Pipeline 
tool with only a single line of code. For basic users, 
we developed two OpenSim GUI plugins  —  one for 
the Model Personalization toolset with its four tools, 
and one for the Treatment Optimization toolset with 
its three tools, where each toolset appears under the 
OpenSim “Tools” menu. The GUI plugin window for 

each tool allows users to set up tool runs by configuring 
the most common settings for each tool (Fig.  1), with 
default values being used automatically for advanced 
tool settings. Tool settings selected in the GUI plugin, 
along with default advanced tool settings, can be 
exported by the user to an XML settings file that can be 
read back into the GUI and modified as desired, just as 
with OpenSim tools. For advanced users, advanced tool 
settings are exposed in each tool’s XML settings file, 
again similar to OpenSim. Advanced users can create 
an initial XML settings file using the GUI plugin, or 
they can start from a pre-existing XML settings file and 
edit the values of basic and advanced tool settings using 
any text editor. For both basic and advanced users, 
each tool is run from the MATLAB command line 
using a tool-specific function that takes a tool-specific 
XML settings file as an input. Thus, no “Run” button is 
provided in any of the GUI plugin tool windows. Tool 
outputs can be plotted in MATLAB using included 
utility functions.

Software engineering principles were used for NMSM 
Pipeline development to facilitate extensibility. Namely, 
atomic functions—functions that complete only a single 
operation—were used extensively. All code was written 
using clear, English-language variable and function 
names and organized into logical groupings. GitHub’s 
source control, automated testing framework, and 
continuous integration tools were used to maintain this 
extensive project and its documentation throughout 
the development process. These choices make NMSM 
Pipeline code easy to understand and easy to modify.

Because NMSM Pipeline tools are based on laws of 
physics and principles of physiology and neuroscience, 
we selected computational methods that best facilitate 
the intended personalized medicine approach. Gradient-
based optimization was used for all tools within the 
NMSM Pipeline primarily for computational speed 
reasons but also for the ability of gradient-based 
optimizers to find better solutions than the initial guess, 
even if the final solution is not the global optimum. For 
the Model Personalization toolset, built-in MATLAB 
optimization algorithms (primarily lsqnonlin and 
fmincon) were used exclusively, while for the Treatment 
Optimization toolset, the open-source IPOPT optimizer 
[66] was used within the commercial GPOPS-II 
direct collocation optimal control software [60]. This 
approach eliminates GPOPS-II and direct collocation 
optimal control from the Model Personalization 
process, making model personalization a more reliable 
and less complex process than it would be if direct 
collocation optimal control were required [41, 67, 68]. 
The Model Personalization toolset automatically uses 
MATLAB’s built-in parallel processing capabilities 
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for calculating finite difference derivatives needed 
by MATLAB optimization algorithms, while the 
Treatment Optimization toolset automatically uses 
parallel processing only for repeated OpenSim analyses 
performed through MATLAB via C++ Mex files.

Through the utilization of OpenSim’s native models 
and entities, we included a number of convenient 
facilities in the NMSM Pipeline. OpenSim native file 
types were used for all data interactions including 
OpenSim model files (.osim), marker data files (.trc), 
kinematic motion and ground reaction data files (.mot), 
time series data files (.sto), and XML settings files (.xml). 

Only one new file type was developed– the NMSM 
Pipeline model file type (.osimx) to store personalized 
model properties that are not included in native 
OpenSim models. Similarly, easy-to-use OpenSim GUI 
tools such as the Scale tool, Inverse Kinematics (IK) 
tool, Inverse Dynamics (ID) tool, and Muscle Analysis 
tool were leveraged as part of the typical pipeline run-
through using experimental movement data. For some 
NMSM Pipeline tools, groups of muscles must be 
identified, and the muscle groups functionality available 
in OpenSim models was used for this purpose to avoid 
the need to store this group information elsewhere.

Fig. 1 Screenshot of the JMP GUI tool sub-window for adding a JMP task. The GUI tools allow for modifying common settings and creating XML 
settings files. Advanced settings can be modified directly in the XML file after creation
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NMSM pipeline toolsets
The NMSM Pipeline is composed of two toolsets  – 
a Model Personalization toolset and a Treatment 
Optimization toolset. The Model Personalization toolset 
personalizes four aspects of a scaled generic OpenSim 
model using experimental movement data and gradient-
based optimization (Fig.  2). Those four aspects are 
1) joint models, 2) muscle–tendon models, 3) neural 
control models, and 4) ground contact models. The 
personalization process is important since personalized 
rather than generic models are needed to support model-
based treatment design for clinical conditions where 
patients exhibit significant heterogeneity (e.g., stroke) 

[69, 70]. Furthermore, without a personalization process, 
neuromusculoskeletal models do not reliably predict 
internal muscle and joint contact forces, body motion, 
or metabolic cost [41, 71–78]. Each stage in the NMSM 
Pipeline Model Personalization process has been shown 
to play an important role in predicting these quantities 
reliably. [41, 71–73, 78, 79]

The Treatment Optimization toolset uses a subject’s 
personalized neuromusculoskeletal model to predict 
their post-treatment movement function using direct 
collocation optimal control (Fig.  3). Over the past 10 
years, musculoskeletal modeling researchers have 
converged on direct collocation optimal control as 
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the best method for generating predictive simulations 
of human movement [35–37, 37, 40, 41, 48, 59, 67, 
80–88]. The Treatment Optimization Toolset uses 
the MATLAB-based GPOPS-II direct collocation 
optimal control software [60] to perform predictive 
simulations of movement for novel conditions where 
no experimental data exist. Similar to MATLAB, 
GPOPS-II is inexpensive for academic use. The optimal 
control solver can adjust neural and/or torque control 
signals along with neural control, anatomical, internal 
implant, and/or external device parameters in a patient’s 
personalized neuromusculoskeletal model to achieve a 
specified treatment goal (e.g., achieve a desired reduction 
in metabolic cost). For any patient, this approach can 
potentially provide the best treatment prescription, the 
best dosage, and an estimate of the patient’s capacity for 
improvement.

Optimization cost function terms for both toolsets 
were designed to minimize squared errors and/or 
cost term values and utilize a common formulation 
with physically meaningful cost function parameters. 
Specifically, cost function terms utilize a maximum 
allowable error and, in some cases, a user-provided 
error center (Fig.  4). For example, if a cost function 
term seeks to minimize errors between model and 
experimental joint moments, and matching to within 
2 Nm is acceptable, then the user would set their cost 

term error center to 0 and the associated maximum 
allowable error to 2. Each cost function term has equal 
weight with all other cost function terms included 
in the optimal control problem formulation, where 
continuous cost function terms involving time series 
data (e.g., joint angles, joint moments) are normalized 
by final time so that they do not contribute to the 
total cost more heavily than do terminal cost function 
terms involving only a single quantity (e.g., metabolic 
cost). This method for formulating all cost function 
terms allows for contextualized decision-making when 
determining weights for different cost function terms.

Neural control models for both toolsets are 
described using muscle synergies. Muscle synergies 
provide a physiologically-relevant low dimensional 
representation of a large number muscle activations 
and can be personalized to represent a specific patient’s 
neural control strategy [89–97]. Each muscle synergy is 
composed of a time-varying synergy activation and an 
associated time-invariant synergy vector. Each synergy 
vector contains a weight for each muscle in the model 
that defines how the associated synergy activation 
contributes to the total activation of the muscle. Muscle 
synergies are commonly calculated using non-negative 
matrix factorization [89, 90], and typically between 
three and six muscle synergies are required to account 

Fig. 4 The generic cost function term formulation used throughout the Model Personalization and Treatment Optimization toolsets. 
The formulation utilizes a maximum allowable error and error center to make the calculated cost physically meaningful. If the difference 
between the current value and the error center is greater than the maximum allowable error, then the quantity in parentheses will be greater 
than 1, and squaring this quantity will amplify the cost (e.g., 1.1^2 = 1.21). In contrast, if the difference between the current value and the error 
center is less than the maximum allowable error, then the quantity in parentheses will be less than 1, and squaring this quantity will attenuate 
the cost (e.g., 0.9^2 = 0.81). For cost function terms that track time-varying experimental data, the time-varying experimental value is used implicitly 
as the error center. For cost function terms that minimize errors relative to a static reference value, the specified error center value is used explicitly 
as the error center
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for over 95% of the signal variability for common tasks 
such as walking, running, and reaching. [98]

Implementation details
Model personalization
The Model Personalization toolset calibrates parameter 
values in an OpenSim neuromusculoskeletal model 
so that the model closely reproduces a wide range of 
experimental movement data. The toolset consists of 
four tools and was designed so that the tools can be 
used largely independently from one another, though 
a preferred tool workflow exists. Personalization is 
likely to be necessary if the musculoskeletal model is to 
be used for clinical treatment design purposes [34]. It 
also improves models for use in predictive simulations 
by maximizing the self-consistency of collected 
experimental data and easing the task of finding a 
realistic, dynamically consistent motion.

The four tools of the Model Personalization toolset 
personalize different anatomical, physiological, and 
neurological aspects of a patient’s OpenSim model. Joint 
Model Personalization (JMP) calibrates the properties of 
OpenSim constraint-based joint models, Muscle–tendon 
Model Personalization (MTP) calibrates the properties of 
Hill-type muscle–tendon models, Neural Control Model 
Personalization (NCP) calibrates the properties of muscle 
synergy control models, and Ground Contact Model 
Personalization (GCP) calibrates the properties of elastic 
foundation foot–ground contact models. OpenSim 
models personalized using the Model Personalization 
toolset can be used in both the NMSM Pipeline’s 
Treatment Optimization Toolset and, in the near future, 
OpenSim Moco. For use with OpenSim Moco, an 
NMSM Pipeline.osimx model file must be converted to 
an OpenSim.osim model file using an provided MATLAB 
model conversion utility program.

The Model Personalization toolset requires input data 
generated using standard OpenSim tools. First, a generic 
musculoskeletal model is scaled using the OpenSim Scale 
Model tool. To facilitate modeling and simulation of 
full-body walking motions, we recommend starting with 
the RCNL2024 OpenSim model (distributed with the 
NMSM Pipeline software), which is a modified version 
of the Rajagopal full-body OpenSim model [99] where 
the ankle joint kinematic model has been changed to 
match van den Bogert et  al. (1994) [100] and the knee 
joint kinematic model changed to eliminate all rotational 
offsets while producing the same motion. A scaled 
generic model is one of the required inputs for the JMP 
tool. After the joints of the model are personalized to 
the individual’s functional joint axes using the JMP tool, 
the user must calculate IK motions and ID loads using 
the OpenSim Inverse Kinematics and Inverse Dynamics 

tools, respectively. The user must then run the Muscle 
Analysis tool to calculate muscle–tendon lengths and 
muscle moment arms if the NMSM Pipeline MTP and 
NCP tools are to be used. For the JMP tool, marker 
files can be manually concatenated to personalize joint 
parameters, values that characterize the transformation 
of the parent and child bodies of a joint, using multiple 
motion trials (e.g., marker data from isolated ankle, 
knee, and hip motion trials can be concatenated with 
marker data from a walking motion trial to calibrate 
the functional axes and joint centers of all lower body 
joints simultaneously). The MTP and NCP tools accept 
data from one or more motion trials, and the GCP tool 
accepts data from only a single motion trial, ideally the 
same trial to be used for Treatment Optimization. If 
multiple motion trials are used with either the MTP or 
NCP tools, IK motions, ID loads, muscle–tendon lengths 
and velocities, and muscle moment arms need to be 
calculated for each motion trial.

Joint model personalization
The Joint Model Personalization tool optimizes joint 
parameters, body scaling, and marker placement to 
minimize IK marker distance errors. [100–106]. Reducing 
inverse kinematics marker distance errors reduces 
downstream errors in calculated inverse dynamic joint 
moments [72], muscle–tendon lengths and velocities, 
muscle moment arms, and ultimately muscle activations 
and forces. These quantities are used by subsequent 
Model Personalization tools.

JMP tool inputs are a scaled generic OpenSim model 
and marker data from one or more motion trials, where 
the tool settings file allows the user to specify one or 
more tasks (Fig.  5). The design variables available in a 
JMP settings file include joint locations and orientations 
in parent and child bodies, body scale factors applied 
uniformly, and marker location offsets for each direction 
independently. The only cost function term is the sum of 
the squared marker distance errors normalized by the 
motion trial duration and number of markers. Only one 
constraint is included in this optimization problem  to 
prevent extreme normalized muscle fiber length values. 
The output of JMP is a new OpenSim model with 
optimized joint parameters, body scale factors, and/or 
marker placements.

Several important considerations should be kept in 
mind when using the JMP tool. A JMP run can be split 
into multiple tasks, each with its own set of design 
variables and an associated marker file. Careful JMP 
setup is required to avoid obtaining non-anatomical 
results. Such a result could be found by personalizing 
a joint parameter for a coordinate that does not move 
through sufficient range of motion (> ~ 25 degrees) 
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during the motion trial [107]. This issue can be rectified 
by personalizing the associated joint parameters with 
separate tasks using isolated joint motion trials, or by 
concatenating data from an isolated joint trial with data 
from the desired functional trial (e.g., walking). Another 
cause of non-anatomic results is selection of joint 
parameters that produce relative bone motions that are 
inconsistent with joint function. For example, the parent 
frame of the hip joint is often defined to be at the center 
of the acetabulum, while the child frame is often defined 
to be at the center of the femoral head. Allowing joint 
parameters to modify the location of the hip joint in 
either the parent or the child frame could move the center 
of the femoral head out of the center of the acetabulum, 
breaking that anatomical relationship. In addition, 
muscle paths and/or relative body sizes may also become 
non-anatomical due to inclusion of inappropriate design 
variables. JMP tool results should be visualized in the 
OpenSim GUI and problem formulations modified to 
achieve an anatomically realistic post-JMP model.

Muscle–tendon model personalization
The Muscle–tendon Model Personalization tool finds an 
optimal set of subject-specific muscle–tendon properties 
and muscle activations from EMG, joint kinematic, 
and joint moment data by balancing optimization cost 
function terms related to muscle properties, similarity 
of properties among grouped muscles, and matching of 
EMG-driven and experimental inverse dynamics joint 
moments [75, 76, 108, 109]. Muscle activation and force 
predictions are sensitive to optimal muscle fiber length 
and tendon slack length [71, 110–112]. Therefore, reliable 
personalization of these parameters is essential for 
generating reliable predictions of muscle activations and 
forces during predictive simulations of movement.

The inputs to the MTP tool are a post-JMP OpenSim 
model as well as IK motion, ID load, muscle–tendon 
length and velocity, and muscle moment arm data 
from one or more motion trials of interest (Fig.  6). The 
design variables that can be optimized include activation 
dynamics and muscle–tendon length parameters for each 
muscle [41, 75, 113]. Cost function terms used by the 
MTP tool minimize muscle–tendon model parameter 
deviations from initial values, ID joint moment tracking 

Fig. 5 Flowchart showing the inputs to and outputs from the JMP tool. The diagram key also applies to Figs. 6 through 9

Muscle-tendon
Model

Personalization

Fig. 6 Flowchart showing the inputs to and outputs from the MTP tool. The diagram key is included in Fig. 5
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errors, passive muscle forces, inconsistencies among 
grouped normalized muscle fiber lengths, inconsistencies 
among grouped muscle excitation scale factors, and 
inconsistencies among grouped electromechanical 
delays. No constraints are applied in this optimization 
problem. The outputs of the MTP tool are a .osimx model 
file containing optimized muscle–tendon properties and 
estimated muscle activations, both for use by other tools 
in the NMSM Pipeline.

Several important considerations should be kept in 
mind when using the MTP tool. Muscle-tendon Length 
Initialization is included as an option within the MTP 
tool and is typically used to find initial values for mus-
cle–tendon length parameters that act as reasonable 
reference values for cost function deviation terms involv-
ing these  parameters. Muscle-tendon Length Initiali-
zation also estimates the maximum isometric force of 
each muscle based on published regression relationships 
[114]. Since scaling maximum isometric force and mus-
cle excitation at the same time produces a non-unique 
muscle force solution, and since muscle excitations are 
scaled using EMG scale factor design variables, maxi-
mum isometric force is held constant during an MTP 
tool run [71]. Synergy Extrapolation (SynX) [115, 116] 
is also included in the MTP tool to estimate the activa-
tions of muscles without experimental EMG data. SynX 
uses muscle synergy concepts to estimate missing activa-
tions and is more accurate than traditionally used static 
optimization at predicting missing EMG signals [117]. A 
typical use case for SynX is estimating the activations of 
deep muscles from which EMG data cannot be easily col-
lected. SynX can use either principal component analy-
sis or non-negative matrix factorization to calculate the 
muscle synergies needed to predict muscle activations 
associated with missing EMG data. The MTP tool uses a 
Hill-type muscle–tendon model with a rigid tendon and 

assumes that muscles function primarily on the ascend-
ing region of their normalized active force–length curves 
[118]. Users can modify cost terms to specify the region 
of the normalized force–length curve over which muscles 
are assumed to operate. Some MTP cost function terms, 
such as inconsistencies among grouped normalized mus-
cle fiber lengths, calculate the difference between the 
grouped values relative to their mean. These cost terms 
are intended to promote similarity in muscle properties 
within a group under the assumption that similar mus-
cles, such as the three uniarticular vastus muscles, should 
have similar properties. These muscle groups must be 
defined within the OpenSim model. Similar cost function 
terms are also present in NCP.

Neural control model personalization
The Neural Control Model Personalization tool finds 
muscle synergies that are as consistent as possible with 
ID joint moments and, when available, MTP-estimated 
muscle activations. The NCP tool fits muscle synergies 
at the level of muscle activations (i.e., after electrome-
chanical delay and activation dynamics) for regions of 
the body where either all muscle activations are available 
from the MTP tool (e.g., the right lower extremity) or no 
muscle activations are available [119, 120]. The tool can 
also be used to find muscle synergies in multiple regions 
of the body simultaneously — some with and some with-
out previously calculated muscle activations. During 
the NCP optimization process, grouped muscle proper-
ties are maintained and activation-related cost function 
terms are minimized. Muscle synergies are typically cal-
culated from muscle activations alone using non-negative 
matrix factorization, and thus the muscle activations 
reconstructed from the resulting synergies will not 
closely reproduce ID joint moments when input into a 
subject’s musculoskeletal model. NCP rectifies this issue 

Fig. 7 Flowchart showing the inputs to and outputs from the NCP tool. The diagram key is included in Fig. 5
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by optimizing synergy activations and synergy vectors to 
be consistent with both ID joint moments and available 
muscle activations simultaneously.

The inputs to the NCP tool are a post-JMP OpenSim 
model as well as data for IK motions, ID loads, muscle–
tendon lengths and velocities, muscle moment arms, 
and, optionally, MTP-calculated muscle activations 
from one or more motion trials of interest (Fig.  7). The 
OpenSim model must contain muscle groups that define 
lists of muscles for which synergy sets are to be fitted 
(e.g., all right leg muscles). The design variables for the 
NCP tool are a set of time-varying synergy activations 
and an associated set of time-invariant synergy vectors. 
The cost function terms for the NCP tool minimize 
ID joint moment matching errors, muscle activation 
matching errors  for muscles used in MTP, muscle 
activations for muscles not used in MTP, inconsistencies 
among grouped normalized muscle fiber lengths, and 
inconsistencies among grouped muscle activations. 
The NCP tool includes a constraint that the sum of the 
muscle weights in each synergy vector must equal a 
constant times the number of muscles described by that 
synergy. Upon output, the synergy vectors and synergy 
activations are normalized such that the largest weight 
in each synergy vector is one. The NCP tool produces 
a set of synergy groups inside a new or pre-existing 
NMSM Pipeline model file (.osimx) as well as data files 
(.sto) containing synergy activations and their associated 
synergy vectors.

Several important considerations should be kept in 
mind when using the NCP tool. Synergy-driven Track-
ing Optimization (TO), part of the Treatment Optimiza-
tion toolset, requires that NCP tool results be used as the 
initial guess. NCP results that distribute errors equally 
between MTP muscle activation matching and ID joint 
moment matching will facilitate the process of finding 
good synergy-driven TO results. In addition, to facilitate 

obtaining good NCP results, users should perform their 
own synergy analysis on the muscle activations produced 
by MTP to determine the optimal number of syner-
gies to use. The number of synergies should be selected 
to achieve the desired variability accounted for (VAF), 
which is often set at 90 or 95% [41, 93, 121, 122]. The 
NCP tool can be run without having MTP tool results 
as inputs through the use of the activation minimization 
cost function term. Since running the NCP tool without 
MTP tool results produces a non-unique solution, the 
maximum allowable error of the activation minimization 
cost function term can be set to achieve a unique solu-
tion that contains activations of expected magnitude. 
Shared synergy vectors between synergy groups can also 
be enforced by the NCP tool. This feature allows for two 
muscle synergy groups, such as those for right and left 
leg muscles, to have nearly identical synergy vectors.

Ground contact model personalization
The Ground Contact Model Personalization tool finds 
physical properties for elastic foundation foot–ground 
contact models that closely reproduce experimental 
ground reaction forces and moments while allowing slight 
changes in foot kinematics. The elastic foundation is com-
posed of a uniform grid of linear springs with nonlinear 
damping and friction placed across the bottom of the 
foot. The tool can personalize ground contact models for 
each foot separately, where physical properties will differ 
between the two feet, or both feet together, where physical 
properties will be the same for the two feet. Currently, the 
tool works with only a two-segment foot model composed 
of a hindfoot segment (including calcaneus, cuboid, navic-
ular, cuneiform, and metatarsal bones) and a toes segment 
(including phalange bones). While generic foot–ground 
contact models can reproduce experimental ground con-
tact forces accurately, they reproduce experimental ground 
reaction moments less accurately, introducing errors into 

Fig. 8 Flowchart showing the inputs to and outputs from the GCP tool. The diagram key is included in Fig. 5
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the lower body joint moments generated by predictive 
simulations of walking [79]. Personalized foot–ground 
contact models can overcome this issue by reproducing 
experimental ground reaction moments as well.

The inputs to the GCP tool are a post-JMP lower-
body or full-body OpenSim model along with IK motion 
and associated ground reaction data for a walking trial, 
where the IK and ground reaction data must possess 
the same time increments (Fig.  8). The ground reaction 
data must contain three forces,  three moments, and a 
point about which the moments are calculated, which 
is typically either a time-invariant point fixed in the 
laboratory or a time-varying center of pressure. The tool 
automatically strips off both feet from the lower-body 
or full-body OpenSim model and creates a 6 degrees of 
freedom (DOF) custom joint connecting each specified 
hindfoot body to ground. The design variables for the 
GCP tool are stiffness coefficients unique to each spring 
with a nonlinear viscous damping coefficient, a dynamic 
friction coefficient, a viscous friction coefficient, and a 
spring resting length common to all springs. Additional 
design variables are B-spline nodal points defining 
small deviations from experimental foot kinematics 
with respect to ground. The cost function terms for the 
GCP tool include minimization of foot marker position 
errors, foot marker velocity errors, hindfoot and toes 
segment rotational coordinate errors, hindfoot segment 
translational coordinate errors, vertical ground reaction 
force errors, horizontal ground reaction force errors, 
ground reaction moment errors, and spring coefficient 
deviations from neighboring spring coefficient values. No 
constraints are present in this optimization problem. The 
output of the GCP tool is a new NMSM Pipeline model 
file (.osimx) containing foot–ground contact model 
parameter values.

Several important considerations should be kept in 
mind when using the GCP tool. The tool can reproduce 
all six components of ground reactions with good fidelity. 
To facilitate reproducing ground reaction moments, we 
use the time-varying projection of a midfoot superior 
marker onto the ground as the point about which 
ground reaction moments are calculated. This automatic 
recalculation of the ground reaction moments helps 
keep the moments well-scaled during a GCP run, since 
the moment arm of the ground reaction force vector 
never becomes excessively large. The center of pressure 
is not used for joint moment matching since it becomes 
inaccurate at the transitions into and out of contact 
due to division by small vertical ground reaction force 
values. At this time, the GCP tool requires the use of a 
two-segment foot model with the distal toes segment 
connected to the hindfoot segment via an oblique pin 
joint. Before personalization, the GCP tool automatically 

extracts two-segment OpenSim foot models from the 
post-JMP lower-body or full-body OpenSim model and 
automatically calculates hindfoot kinematics with respect 
to ground that are consistent with the input lower-body 
or full-body kinematics. Since the foot–ground contact 
model is sensitive to foot kinematic changes below the 
measurement accuracy of a markered motion capture 
system, the GCP tool allows for small changes to the foot 
motion trajectory to facilitate ground reaction matching. 
Each foot model possesses seven coordinates: six ground-
to-hindfoot coordinates via a 6 DOF custom joint and 
one toes coordinate via a pin joint. Coordinate deviations 
are parameterized with B-spline nodes to reduce the 
number of design variables. The GCP tool automatically 
estimates the number of B-spline nodes needed based 
on a specified lowpass filter cutoff frequency. Another 
important feature of the GCP tool is its ability to use a 
different time window for calibrating each foot. This 
feature facilitates the use of the GCP tool with ground 
reaction data obtained from labs possessing only two 
in-ground force plates. The GCP tool also allows for 
symmetric physical properties between contact surfaces 
on the two feet, and users can modify the number of 
springs along each dimension of the grid.

Treatment optimization
The Treatment Optimization toolset generates predictive 
simulations of a patient’s post-treatment movement 
function by optimizing specified treatment design 
parameters. The toolset consists of three tools designed 
using a “theme and variation” approach, where the tools 
are intended to be used in a specific order, with each tool 
serving a distinct purpose. Each tool uses the GPOPS-II 
direct collocation optimal control software for MATLAB 
[60] and maintains a consistent structure for data inputs, 
problem design, cost function terms (see Table  S1  for 
an exhaustive list), constraint terms (see Table  S2  for 
an exhaustive list), and outputs, with variations (Fig. 9). 
The Tracking Optimization tool (TO) generates “starting 
point” predictive simulations of patient movement that 
are dynamically consistent and closely reproduce all 
relevant experimental movement data available from 
the patient (e.g., joint motion, joint moment, ground 
reaction, and EMG data). The Verification Optimization 
tool (VO) starts from the Tracking Optimization solution 
and verifies that the controls found produce the correct 
motion without tracking the motion directly, which 
ensures that the subsequent treatment design problem 
is well formulated before simulated treatments are 
explored. Finally, the Design Optimization tool (DO) 
starts from the Verification Optimization solution, 
applies and (if desired) optimizes simulated treatments, 
and predicts the patient’s resulting post-treatment 
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movement along with associated controls and loads. All 
three tools work with torque controlled, muscle synergy 
controlled, and combined torque and muscle synergy 
controlled problem formulations. For problems utilizing 
muscle synergy control, all three tools require surrogate 
musculoskeletal geometry created from the final 
OpenSim model produced by the Model Personalization 
process. The surrogate geometry creation process is 
semi-automated and involves using a provided MATLAB 
utility function to generate sample model poses spread 
around a specified nominal motion, performing a single 
Muscle Analysis on the sampled model poses using the 
OpenSim GUI, and fitting surrogate muscle-tendon 
length, velocity, and moment arm models from the 

Muscle Analysis outputs automatically at the start of a 
TO, VO, or DO tool run.

Several important considerations should be kept in 
mind when working with the Treatment Optimization 
toolset. Direct collocation optimal control problems are 
solved by modifying states and controls simultaneously 
to minimize an objective function and fulfill constraints. 
For Treatment Optimization, the states consist of joint 
positions and velocities for selected OpenSim model 
coordinates and the controls consist of corresponding 
joint accelerations (due to the use of an implicit dynamics 
formulation [59]), torque controls, synergy controls, 
or both. All Treatment Optimization tools accept both 
a “tracked quantities” and an “initial guess” directory. 

TO/VO/DO
Settings
(.xml)

Surrogate
Geometry
(.mat)

Fig. 9 Flowchart showing the inputs to and outputs from the tools included in the Treatment Optimization toolset. Since these tools follow 
a theme and variation approach, various data combinations can be included or excluded based on the goals of the user. The diagram key 
is included in Fig. 5

Fig. 10 Illustration showing how range scale factors are used to set bounds on the states and controls within GPOPS-II. The range scale factor value 
is used to set the maximum and minimum searchable spaces for the states and controls as offsets beyond the initial range. In this figure, a range 
scale factor of 0.5 was used
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The tracked quantities directory contains reference 
data (e.g., experimental joint positions, joint moments, 
muscle activations, and ground reactions) to be tracked 
by specified cost function terms while the initial guess 
directory contains data specifying the initial guess for the 
problem’s states and controls. Treatment Optimization 
XML settings files allow for joint position, velocity, and 
acceleration range scale factors as well as muscle synergy 
and torque controller range scale factors. These range 
scale factors describe the search space of the optimal 
control problem by confining the states and controls to 
be within a certain range relative to their initial range 
(see Fig.  10). After a completed run, all Treatment 
Optimization tools output the same files to a user-
specified results directory. Specifically, the solution’s 
states and controls, along with IK motions, ID loads, 
and ground reactions calculated from the solution’s 
states and controls, are output to the specified directory. 
Saved states and controls can then be passed to the next 
Treatment Optimization tool as an initial guess to pick 
up where the previous tool left off.

Because Treatment Optimization tools use implicit 
dynamics [41, 59], several constraint terms must be 
included for successful use of the toolset. One constraint 
is that the joint acceleration controls must be the first 
time derivatives of the joint velocity states, and the joint 
velocity states must be the first time derivatives of the 
joint position states. These constraints are handled inter-
nally by GPOPS-II. Another constraint is that the net 
joint loads produced by the torque and synergy controls 
must be consistent with the model’s inverse dynamic 
loads. This constraint must be handled by the user by 
including kinetic consistency constraint terms for all 
controlled coordinates included in the problem formula-
tion. For models with non-physical residual forces and/
or torques acting on the root segment (i.e., the segment 
connecting the model to ground), if the user wants their 
Treatment Optimization solutions to be dynamically 
consistent, then root segment residual load constraints 
must be added by the user to ensure that the final residual 
loads are close to zero. In addition, if the motion of inter-
est is expected to be periodic, such as for walking, run-
ning, cycling, or stair-climbing, then  joint position and 
velocity along with ground reaction force and moment 
periodicity constraints can be used to ensure that a near-
periodic motion is found.

Tracking optimization
The Tracking Optimization tool uses a personalized 
model to produce a dynamically consistent movement 
simulation that closely reproduces all available 
experimental motion data, including joint motions, joint 
moments, ground reaction forces and moments, and 

muscle activations. To achieve a dynamically consistent 
motion, the tool spreads out matching errors between the 
different experimental quantities based on user-specified 
maximum allowable errors. The tool accepts a post-JMP 
OpenSim model (.osim file) and personalized NMSM 
Pipeline model (.osimx file) along with experimental IK 
motions, ID loads, ground reactions, muscle–tendon 
lengths and velocities, muscle moment arms, and, if 
using synergy controls, NCP results for the trial of 
interest. The following cost function terms are commonly 
included to achieve a successful Tracking Optimization 
run: generalized coordinate tracking, generalized speed 
tracking, inverse dynamic moment tracking, muscle 
activation tracking, external force tracking, external 
moment tracking, body orientation relative to ground 
tracking, and center of pressure tracking. Common 
constraint terms include kinetic consistency, state 
position periodicity, state velocity periodicity, ground 
reaction force periodicity, ground reaction moment 
periodicity, and root segment residual load bounding.

Several important considerations should be kept in 
mind when using the Tracking Optimization tool. Find-
ing a good result with the Tracking Optimization tool 
is the biggest challenge in the NMSM Pipeline. The goal 
is to trade off errors between tracked experimental data 
sources by modifying the maximum allowable error in 
each cost function term based on the importance of and 
confidence in the respective experimental data. Higher 
quality Model Personalization results and highly con-
sistent tracked experimental quantities (e.g., tracked 
muscle activations should closely reproduce tracked ID 
moments) make finding a good Tracking Optimization 
solution easier.

Verification optimization
The Verification Optimization tool is used to perform a 
“dry run” Design Optimization without including any 
“design elements”, the goal being to ensure a good initial 
guess and to verify the appropriateness of the optimal 
control problem formulation. The tool accepts the same 
inputs as the TO tool, but in general, the results directory 
of a TO run is used for both the initial guess and tracked 
quantities. The cost function terms for the VO tool 
include controller tracking and, for uncontrolled joints, 
generalized coordinate tracking. Similar to the TO tool, 
the VO tool includes constraint terms for kinetic consist-
ency, state position periodicity, state velocity periodicity, 
and root segment residual load bounding. If a VO prob-
lem is well formulated, it should converge quickly since 
the initial guess is already at the optimal solution.

Several important considerations should be kept in 
mind when using the Verification Optimization tool. 
Users must decide whether each coordinate should be 
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controlled or tracked. If controlled, the coordinate should 
be assigned the same controller (synergy, torque, or both) 
as in the TO tool, and the controls should be tracked by 
the VO tool. Conversely, if the coordinate does not have 
a controller or has a non-essential controller, then the 
coordinate should be tracked by the VO tool. An exam-
ple of a non-essential controller is a torque controller 
on an upper body joint for a full body gait model with 
only lower body muscles. The results of a VO run should 
closely match the outputs of the TO run used to define 
the initial guess and tracked quantities. If the results 
do not match closely, then a problem formulation issue 
is likely present, and users should review their TO and 
VO settings. Examples of potential problem formulation 
issues are having a generalized coordinate that is neither 
controlled nor tracked, having a generalized coordinate 
that is both controlled and tracked, or having a general-
ized coordinate that is tracked with a different maximum 
allowable error than was used by TO. Each of these situ-
ations can produce a VO solution that differs from the 
TO initial guess. After an adequate VO solution is found, 
users can move on to the DO tool by adding a “treat-
ment” to their VO problem formulation.

Design optimization
The Design Optimization tool predicts or optimizes how 
a planned treatment will affect a patient’s post-treatment 
movement function. The tool accepts the same inputs as 
the other Treatment Optimization tools, but typically VO 
results are used as the initial guess. Similar to VO, DO 
allows for controller tracking and generalized coordinate 
tracking alongside other DO-specific cost function terms. 
Similar to TO and VO, DO can use kinetic consistency, 
state position periodicity, state velocity periodicity, and 
root segment residual load constraint terms as well as 
other constraints to facilitate the design of a personalized 
intervention.

Several important considerations should be kept in 
mind when using the Design Optimization tool. Unlike 
the other Treatment Optimization tools, the DO tool 
allows for both fixed and free final time problem for-
mulations. For free final time problems, the time vector 
can be constrained to a user defined range and tracked 
control quantities are stretched or compressed in time 
to match the current time vector. In addition to all 
cost function and constraint terms available in the TO 
and VO tools,  the DO tool includes a number of addi-
tional  built-in cost function terms. These terms include 
minimizing the following types of errors with respect 
to a target value: braking and propulsive impulse, meta-
bolic cost per unit of time or distance [123], whole-body 
angular momentum, and joint mechanical energy genera-
tion or absorption. Three key features of the DO tool are 

support for model modification functions, user-defined 
cost function terms, and user-defined constraint terms. 
By employing model modification functions alongside 
GPOPS-II’s static parameters feature, users can change 
the OpenSim musculoskeletal model, modify the neural 
control model, or adjust parameter values in an assistive 
device. Possible model modifications include changing 
bone geometry (e.g., osteotomy parameters), changing 
muscle–tendon properties (e.g., strengthening muscles or 
adjusting optimal muscle fiber lengths), changing neural 
control properties (e.g., altering synergy vector weights), 
modifying ground contact model parameters, optimizing 
muscle attachment locations or muscle wrapping surface 
parameters, redefining joint parameters, and modifying 
external device design and/or control parameters. User-
defined cost function  and constraint terms allow users 
to write custom MATLAB functions, with specific func-
tion signatures, that are included as additional cost func-
tion  and constraint terms given the  current iteration’s 
states, controls, and static parameters.

Example application
Treatment design rationale
To demonstrate the capabilities of the NMSM Pipeline, 
we used it to investigate a hypothetical treatment to 
improve walking speed and function for an individual 
post-stroke. Published studies have hypothesized that 
time-varying synergy activations originate in the brain 
while time-invariant synergy vectors reside in the spinal 
cord [124, 125]. If this hypothesis is true, then one might 
expect a stroke to affect a patient’s synergy activations 
but not synergy vectors [125]. This expectation in turn 
suggests that an individual post-stroke may have similar 
synergy vectors between the two legs but lack the ability 
to recruit one or more of them effectively on the paretic 
side. Furthermore, published studies have reported that 
a stroke results in altered neural coordination even on 
the non-paretic side [126–128]. Taken together, these 
observations lead to the hypothesis that a stroke may 
impair recruitment of one or more synergy activations 
in the paretic leg, resulting in altered recruitment of one 
or more synergy activations in the non-paretic leg, and 
that restoration of these impaired and altered synergy 
activations could result in improved self-selected walking 
speed and metabolic cost. [128–130]

To investigate this hypothesis, we used the NMSM 
Pipeline to design a hypothetical treatment that would 
modify paretic and non-paretic leg synergy activations 
for an individual post-stroke with the goal of increasing 
his self-selected walking speed without increasing his 
metabolic cost. Previously published experimental walk-
ing data collected from an individual post-stroke with a 
self-selected walking speed of 0.5 m/s were used for the 
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investigation [41]. Research has shown that both healthy 
individuals and individuals post-stroke tend to choose a 
self-selected walking speed that achieves a desired met-
abolic cost per unit time [131]. Furthermore, to achieve 
successful community ambulation (as defined by the 
walking speed required to cross a typical street before the 
light changes [132]), individuals should be able to walk at 
a self-selected speed of 0.8 m/s [132, 133]. Thus, the spe-
cific goal of the hypothetical treatment was to increase 
the subject’s self-selected walking speed to 0.8 m/s while 
maintaining the same metabolic cost per unit time esti-
mated for the subject’s original self-selected walking 
speed of 0.5 m/s.

Experimental data collection
As described in Meyer et al. (2016) [41], the experimen-
tal data used for the present study were collected from 
a high-functioning hemiparetic subject with chronic 
stroke-related walking dysfunction (sex male, age 79 
years, LE Fugl-Meyer Motor Assessment 32/34 pts, right-
sided hemiparesis, height 1.7 m, mass 80.5 kg). Experi-
mental data collection was approved by the University of 
Florida Health Science Center Institutional Review Board 
(IRB-01) and the Malcom Randall VA Medical Center 
Research and Development Committee, and the subject 
gave written informed consent prior to participation. 
Motion capture (Vicon Corp., Oxford, UK), ground reac-
tion (Bertec Corp., Columbus, OH, USA), and electromy-
ography (EMG) data (Motion Lab Systems, Baton Rouge, 
LA, USA) were collected simultaneously while the sub-
ject walked on a split-belt instrumented treadmill with 
belts tied. The subject walked at his self-selected speed of 
0.5 m/s and fastest comfortable speed of 0.8 m/s. To facil-
itate ground contact model personalization, the subject 
wore Adidas Samba Classic sneakers, which possess a flat 
sole with neutral midsole. Motion capture data utilized 
a full-body marker set with one marker at each toe tip, 
three markers on each hindfoot, shank, and thigh, three 
markers on the pelvis, and one marker on each acromion, 
elbow, and wrist (Reinbolt et al., 2005; Fregly et al., 2007). 
Ground reaction data from each treadmill force plate 
included three force and moment components along with 
the location of the fixed point used for moment calcula-
tions. EMG data included a combination of surface and 
fine-wire electrodes collected from 16 muscles on each 
leg, including deep muscles adductor longus, iliopsoas, 
tibialis posterior, extensor digitorum longus, and flexor 
digitorum longus.

Processing of marker motion, ground reaction, and 
EMG data followed a previously published protocol 
[41]. Marker motion and ground reaction data were 
filtered at a variable cut-off frequency of 7/tf Hz, 
where tf is the period of the gait cycle being analyzed, 

using a fourth-order zero phase lag Butterworth filter 
[134]. EMG data were high-pass filtered at 40 Hz, [75] 
demeaned, rectified, and low-pass filtered at a variable 
cut-off frequency 3.5/tf Hz using a fourth-order zero 
phase lag Butterworth filter. Each processed EMG signal 
was normalized by the maximum value over all walking 
cycles and then offset so that the minimum value was 
zero. For both walking speeds, the single most periodic 
walking cycle (heel strike to heel strike for the paretic 
right leg) was selected for analysis, and all data for this 
one cycle were resampled to 101 time points. After 
resampling, EMG data were padded with 200 ms (18 
time points) before the start of the cycle to account for 
electromechanical delay.

Model personalization process
We utilized all four tools in the Model Personalization 
toolset to personalize a full-body neuromusculoskeletal 
model of the subject being studied. The starting point 
for the model personalization process was a scaled 
RCNL2024 full-body OpenSim model, where scaling 
was performed using the OpenSim Model Scaling 
tool with experimental marker data collected from the 
subject during a static standing trial. All subsequent 
NMSM Pipeline tool runs were performed on a Dell PC 
workstation possessing 48 cores.

First, the JMP tool was used to personalize lower 
body joint parameters and lower body scaling by 
minimizing IK marker distance errors. The selected 0.8 
m/s gait cycle marker data were used for all JMP tool 
tasks. To avoid non-anatomical muscle paths around 
the hip complex, the left and right hip joint parameters 
were not personalized. The left and right knee and 
ankle joints were personalized, but the subtalar joint 
was not personalized because the joint did not move 
through a sufficient range of motion to personalize 
the joint’s parameter values accurately. The JMP tool 
reduced marker distance errors for the thigh, shank, 

Table 1 Marker distance errors before and after Joint Model 
Personalization

RMS and maximum marker distance errors (mm) for the right and left knee and 
ankle (including subtalar) joints. Markers included in each joint’s JMP marker 
set included thigh and shank markers for each knee joint and shank and foot 
markers for each ankle joint. These markers were used to find the pre- and post-
JMP RMS and maximum marker distance errors.

RMS (mm) Max (mm)

Pre-JMP Post-JMP Pre-JMP Post-JMP

Right knee 7.5 4.2 18.5 11.8

Right ankle 6.1 3.3 16.9 9.1

Left knee 9.5 4.1 26.3 12.8

Left ankle 6.5 3.2 16.4 10.1
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and foot markers by 48.4% for the gait cycle of interest. 
Additional JMP results are included in Table 1 and in the 
supplementary material. Convergence was achieved after 
approximately 90 min of CPU time.

Second, the MTP tool was used to personalize the 
properties of all lower body muscles by minimizing 
errors in matching inverse dynamic joint moments and 
changes in initial muscle–tendon parameter values 
while also predicting missing EMG signals for deep or 
“small” muscles (e.g., gemellus). Before the MTP tool 
was run, the OpenSim Inverse Kinematics, Inverse 
Dynamics, and Muscle Analysis tools were run from the 
OpenSim GUI using the selected 0.8 m/s walking cycle 
data. Using the outputs of these GUI tools, an NMSM 
Pipeline utility script processed EMG data, calculated 
muscle–tendon velocity from muscle–tendon length 
data, and automatically organized the trial data into the 
directory structure required by the MTP tool. Muscle 
groups were added to the post-JMP OpenSim model 
to group muscles based on normalized fiber length 
similarity and activation similarity. Muscle–tendon 
Length Initialization was used to find initial values for 
optimal muscle fiber length and tendon slack length. 
At that point, muscle–tendon model and activation 
dynamics parameter values were personalized. This 
process was repeated for each leg separately via 
separate runs of the MTP tool. After the MTP tool 
was run for both legs, the left leg was found to match 
lower body joint moments with an average root mean 
square (RMS) error of 3.5 Nm and the right leg with an 
average RMS error of 2.1 Nm. Joint-specific moment 
matching results are included in Table 2 with additional 
plots available in the supplementary material. A custom 
script was used to combine the left and right leg results 

for use by the NCP tool. Convergence was achieved 
after approximately 30 min of CPU time.

Third, the NCP tool was used to calculate lower body 
muscle synergies (i.e., synergy vectors and activations) 
by minimizing errors in matching inverse dynamic joint 
moments and muscle activations produced by the MTP 
tool. Given our treatment design rationale above, we 
assumed that the subject’s synergy vectors were the same 
while his synergy activations were different for the two 
legs. As a result, the NCP tool was used with the bilateral 
synergy vector symmetry option enabled. Synergy sets 
were defined as muscle groups denoting the right and left 
legs. A preliminary synergy analysis performed on the 
subject’s processed EMG data indicated that six synergies 
were sufficient to account for signal variability even with 
the added synergy vector symmetry constraint. Muscle-
tendon Length Initialization was not performed as part of 
this NCP tool run because all muscles had MTP-derived 
muscle activations and thus the activation minimization 
term was not used. The muscle synergies found by the 
NCP tool reproduced all lower body joint moments 
with an average RMSE of 2.2 Nm and all MTP-derived 
muscle activations with an average RMSE of 0.034. 
Additional NCP results are included in Table 3 and in the 
supplementary material. Convergence was achieved after 
approximately 3 h of CPU time.

Fourth, the GCP tool was used to personalize foot–
ground contact model parameter values by minimizing 
errors in matching ground reaction forces, ground 
reaction moments, and foot kinematics. A contact 
element grid size of 5 by 11 was selected to match 
previous successful investigations [79]. The cost functions 
for the three tasks performed by the tool were dominated 
by terms that emphasized matching the vertical GRF, 

Table 2 Lower body joint moment matching errors following Muscle–tendon Model Personalization

RMS errors between net joint moments calculated by the OpenSim ID tool and those calculated by the NMSM Pipeline MTP tool following Muscle–tendon Model 
Personalization

Joint Coordinate Hip Flexion Hip Adduction Hip Rotation Knee Angle Ankle Angle Subtalar 
Angle

Right (Nm) 2.9 2.7 3.1 1.7 1.0 1.5

Left (Nm) 5.8 4.3 4.8 2.2 2.4 1.5

Table 3 Lower body joint moment matching errors following Neural Control Model Personalization

RMS errors between net joint moments calculated by the OpenSim ID tool and those calculated by the NMSM Pipeline NCP tool following Neural Control Model 
Personalization using muscle synergies

Joint Coordinate Hip Flexion Hip Adduction Hip Rotation Knee Angle Ankle Angle Subtalar 
Angle

Right (Nm) 1.2 2.2 2.9 2.7 1.0 1.5

Left (Nm) 1.6 3.0 3.4 2.8 2.4 1.7
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vertical and horizontal GRF, and vertical and horizontal 
GRF as well as ground reaction moments, respectively, 
with each task starting from the solution of the previous 
task to track additional quantities dependent on the 
previous quantities. To facilitate smooth ground reaction 
forces during Treatment Optimization, we used the 
viscous friction coefficient as a design variable and turned 
off dynamic friction. The viscous friction model penalizes 
excessive foot velocity with respect to the ground during 
ground contact, which could lead to excessive horizontal 
GRFs in predictive simulations. The GCP tool produced a 
personalized non-uniform distribution of spring stiffness 
coefficients and matched ground reaction forces, ground 
reaction moments, foot positions, and foot orientations 
with RMSEs of 4.6 N, 2.1 Nm, 6.4 mm, and 1.7 degrees, 
respectively. [135, 136] Additional GCP results are 
included in Table  4 and in the supplementary material. 
Convergence was achieved after approximately 4  h of 
CPU time.

Treatment optimization process
After personalizing the subject’s neuromusculoskeletal 
model using all four Model Personalization tools, we 
ran all three Treatment Optimization tools to predict 
how underutilized paretic and non-paretic leg synergy 
activations should be upregulated to achieve a 0.8 m/s 
self-selected walking speed without increasing metabolic 
cost per unit time above the subject’s 0.5 m/s level.

First, the TO tool was used to generate a dynamically 
consistent full body walking motion at 0.8 m/s that 
closely reproduced the subject’s joint motion, joint 
moment, ground reaction, and muscle activation data 
simultaneously using muscle synergy controls for the 
lower body and joint torque controls for the back and 
upper body. Since synergy-driven TO requires an initial 
guess for synergy vectors and activations, the XML 
settings file for the TO tool was configured such that the 

initial guess directly was defined to be the NCP results 
directory while the tracked quantities directory was 
defined to be the preprocessed data directory created 
after running the JMP tool. Other information, including 
an NMSM Pipeline model file (.osimx), the post-JMP 
OpenSim model, and the specified output directory, were 
also included in the TO tool XML settings file. All lower 
body joints were controlled by synergy controllers except 
for the toes coordinate, which was left uncontrolled, and 
all other joints were controlled by torque controllers. 
Cost function terms tracked joint positions and velocities 
found by a post-JMP IK analysis, joint moments found 
by a post-JMP ID analysis (excluding pelvis residual 
loads), muscle activations found by MTP, and external 
loads consisting of processed experimental ground 
reaction data. Constraint terms included bounded kinetic 
consistency errors (0.01 Nm) for all controlled joints, 
root segment residual loads for the pelvis (1 N for forces 
and 0.1 Nm for moments), and joint position periodicity 
errors (0.05 rad for joints below the pelvis and 0.1 rad for 
joints above it). The solution produced by the TO tool 
matched tracked joint positions with an average RMSE 
of 2.1 degrees, joint moments with an average RMSE of 
5.1 Nm, ground reaction forces with an average RMSE 
of 25.3 N, ground reaction moments with an average 
RMSE of 4.0 Nm, and muscle activations with an average 
RMSE of 0.038. Additional TO results are included in 
Table 5 and in the supplementary material. Convergence 
was achieved after 305 IPOPT iterations, which required 
approximately 770 min of CPU time.

Second, the VO tool was used to verify that tracking 
the muscle synergy controls and upper body plus 
toes joint kinematics found by the TO tool reproduced 
the joint motions, joint moments, and ground 
reactions predicted by the TO tool without tracking 
those quantities explicitly. For the VO run, the results 
of the previous TO run were used for both the initial 

Table 4 Ground reaction force/moment and foot position/orientation errors following Ground Contact Model Personalization

RMS errors between ground reaction forces and moments measured experimentally, and foot positions and orientations measured experimentally, and those 
calculated by the NMSM Pipeline GCP tool following Ground Contact Model Personalization

Ground 
Reaction 
Forces and 
Moments

Anterior Force (N) Vertical Force (N) Lateral Force (N) X Moment (Nm) Y Moment (Nm) Z Moment (Nm)

Right 3.5 10.2 0.9 4.6 0.9 2.0

Left 4.1 7.4 1.3 1.8 1.1 2.1

Foot Posi-
tions and Ori-
entations

X Translation (mm) Y Translation (mm) Z Translation (mm) X Rotation (deg) Y Rotation (deg) Z Rotation (deg) Toe Angle (deg)

Right 5.6 10.1 6.5 0.5 1.1 3.7 1.3

Left 4.9 6.6 4.8 2.1 1.7 2.5 1.2
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guess and tracked quantities data. Cost function terms 
tracked TO-found synergy controls and TO-found 
torque-controlled and uncontrolled  joint positions. 
Constraint terms included bounded kinetic consistency 
errors (0.01 Nm) for all controlled joints, root segment 
residual loads for the pelvis (1 N for forces and 0.1 
Nm for moments), and joint position periodicity 
errors (0.05 rad for joints below the pelvis and 0.1 rad 
for joints above it). The solution produced by the VO 
tool matched tracked joint positions with an average 
RMSE of 0.1 deg, joint moments with an average RMSE 
of 0.1 Nm, ground reaction forces with an average 
RMSE of 0.7 N, ground reaction moments with an 
average RMSE of 0.1 Nm, and muscle activations with 
an average RMSE of 0.01. Additional O results are 
included in Table 6 and in the supplementary material. 
Convergence was achieved after 101 IPOPT iterations, 
which required approximately 170 min of CPU time. 
Since the VO results closely matched the TO results, 
we were confident that the controller and joint position 
tracking cost function terms and associated constraint 
terms selected for the Verification Optimization could 
be used as the basis for the Design Optimization.

Finally, the DO tool was used to explore whether 
upregulating underutilized synergy activations in 
the paretic leg and downregulating overutilized 
synergy activations in the non-paretic legs could 
produce a faster self-selected walking speed of 0.8 
m/s while maintaining the same metabolic cost per 
unit time calculated for the subject’s original self-
selected walking speed of 0.5 m/s. The hypothesis 
in this problem formulation is that large differences 
in synergy activation amplitudes between the two 
legs are indicative of impaired paretic leg synergy 
activations that are smaller than desired and 
compensatory non-paretic leg synergy activations 
that are larger than desired. When we evaluated the 
synergy activations found by VO for the two legs, 
we identified four pairs that varied significantly in 

amplitude between the left and right sides. Based on 
this observation, we formulated a DO problem that 
sought to bring these four synergy activations with 
disparate amplitudes in the two legs closer to each 
other. Each pair of asymmetric synergy activations 
contained a “weak” and “strong” side. First, scaled-up 
“weak” synergy activations were tracked for each 
pair to increase their amplitudes. Second, a custom 
user-defined cost function was written to reward 
synergy amplitude similarities between the “weak” 
and “strong” synergy activations. A user-defined static 
parameter was added for each of the four synergy pairs 
representing the amplitude scale factor to be applied 
to the “strong’’ synergy activation using a user-defined 
model modification function. These two  cost function 
terms increased “weak” synergy activations and 
encouraged over-active “strong”  synergy activations 
to reduce to more symmetric magnitudes while not 
overconstraining the control space. In addition, a 
cost function term was added to find a solution with 
a metabolic cost per unit time that matched the value 
calculated for the subject’s original 0.5 m/s self-selected 
walking speed. This value was 90% of the original 
value calculated for the subject’s 0.8 m/s self-selected 
walking speed, making a 10% reduction the target. Cost 
function terms also tracked VO-found synergy controls 
for the two symmetric control pairs and VO-found 
torque controls. Constraint terms included bounded 
kinetic consistency errors (0.01 Nm) for all controlled 
joints, root segment residual loads for the pelvis (1 N 
for forces and 0.1 Nm for moments), and joint position 
periodicity errors (0.05 rad for joints below the pelvis 
and 0.1 rad for joints above it). The VO results were 
used in both the initial guess and tracked quantities 
data directories, and the final time was fixed at the 
value determined experimentally for the selected 0.8 
m/s walking trial.

The DO predictive simulation produced modified 
kinematics, synergy activations, and ground reactions 

Table 5 Lower body Tracking Optimization errors relative to 
experimental data

RMS errors between joint angles, joint moments, ground reaction forces, ground 
reaction moments, and muscle activations for the right and left legs obtained 
from experimental data and corresponding quantities predicted by the NMSM 
Pipeline TO tool.

Joint 
Angles 
(deg)

Joint 
Moments 
(Nm)

Ground 
Reaction 
Forces (N)

Ground 
Reaction 
Moments 
(Nm)

Muscle 
Activations

Right 2.7 4.0 22.8 4.3 0.037

Left 3.1 4.8 27.9 3.7 0.039

Table 6 Lower body Verification Optimization errors relative to 
Tracking Optimization results

RMS errors between joint angles, joint moments, ground reaction forces, ground 
reaction moments, and muscle activations for the right and left legs obtained 
from the NMSM Pipeline TO tool and corresponding quantities predicted by the 
NMSM Pipeline VO tool.

Joint 
Angles 
(deg)

Joint 
Moments 
(Nm)

Ground 
Reaction 
Forces (N)

Ground 
Reaction 
Moments 
(Nm)

Muscle 
Activations

Right 0.09 0.06 0.44 0.06 0.01

Left 0.08 0.09 0.97 0.09 0.01
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that reduced the subject’s metabolic cost per unit time 
by 9.9% for the selected gait cycle and achieved closely 
matching maximum amplitudes for the four modified 
synergy activations. Final results are plotted in Fig.  11. 
Convergence was achieved after 489 IPOPT iterations, 
which required approximately 730 min of CPU time. 
These DO results suggest that upregulating weak paretic 
leg synergy activations while downregulating paired non-
paretic leg synergy activations could potentially allow 
the modeled subject to increase his self-selected walking 
speed by 60% without increasing his metabolic cost per 
unit time.

Discussion
The primary objective of this work was to develop a novel 
set of easy-to-use computational tools that facilitate the 
creation of personalized neuromusculoskeletal models 
and the subsequent design of personalized clinical 
treatments by researchers and clinicians with little to 
no programming experience. These tools dramatically 
reduce the barrier to entry for researchers and clinicians 
working together who would like to explore using 
personalized computational neuromusculoskeletal 
models to design personalized treatment approaches. 
As shown in the example application, the NMSM 
Pipeline has the potential to change the way 

Fig. 11 Plots showing the final predictive simulation results from the DO tool. Subfigures A) kinematics, B) synergy activations, C) muscle 
activations, and D) ground reaction forces and moments after VO (blue) and DO (red), respectively
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treatments are investigated and applied throughout the 
neuromusculoskeletal injury space.

Going forward, two key questions need to be addressed 
if the NMSM Pipeline is to be used to design actual 
clinical treatments for actual patients. The first question 
is, how should the patient’s personalized model and 
neural control strategy be changed in response to the 
simulated treatment? The second question is, how 
can one validate a patient’s predicted post-treatment 
movement function? The answers to these two questions 
will depend on the specific clinical application and which 
aspects of the patient’s neuromusculoskeletal system 
need to be modeled and personalized to investigate that 
application. The answers will also involve developing 
an understanding of how the planned intervention 
will affect a patient’s model parameter values and 
neural control strategy. Collection of post-intervention 
movement data will be required so that the entire Model 
Personalization and Treatment Optimization process can 
be evaluated, refined, and ultimately validated for one 
clinical application at a time.

To conceptualize how these two important questions 
could be addressed, one can consider two NMSM 
Pipeline clinical applications being explored by the 
authors—one involving knee osteoarthritis rehabilitation 
design, and one involving pelvic cancer surgical planning. 
Past computational research involving a subject with 
bilateral medial compartment knee osteoarthritis 
investigated whether personalized gait modifications 
could be designed to reduce the subject’s peak adduction 
moment in both knees to an extent comparable to 
invasive high tibial osteotomy surgery  [137]. For this 
treatment optimization problem, no muscles or neural 
control needed to be modeled, which simplified the 
treatment design process. The computational treatment 
design process involved: a) creating a personalized full-
body dynamic skeletal model of the subject using pre-
rehabilitation gait data, b) selecting a post-treatment 
control approach to be used when predicting post-
treatment walking function (in this case, minimize 
changes in lower body joint moments relative to pre-
rehabilitation gait data), c) performing a treatment 
optimization process with the personalized model and 
selected control approach to identify gait modifications 
that would offload the medial compartment of both 
knees, d) training the subject to perform and consolidate 
the modified walking motion, and finally e) re-testing the 
subject in a gait lab to evaluate how well the predicted 
gait modifications could reduce both peak adduction 
moment peaks. After informal training, the subject was 
able to perform the predicted gait modifications and 
achieve bilateral reductions in the peak knee adduction 
moment that were comparable to the treatment 

optimization predictions. A similar computational 
treatment design process is currently being repeated 
using the NMSM Pipeline except with greater flexibility 
in the range of potential gait modifications that can be 
predicted.

Ongoing computational research involving subjects 
with pelvic cancer is investigating whether surgical 
decisions can be planned to achieve a post-surgery gait 
motion and self-selected walking speed that is as close 
to normal as possible for each patient [68, 138]. For this 
treatment optimization problem, both muscles and 
neural control need to be modeled, which complicates 
the treatment design process. The computational treat-
ment design process being explored involves: a) creating 
a personalized full-body dynamic neuromusculoskel-
etal model of the patient using pre-surgery gait, EMG, 
and imaging data (to personalize pelvis bony geometry), 
b) selecting a post-surgery control approach to be used 
when predicting post-surgery walking function (in this 
case, minimize changes in muscle synergy quantities 
relative to pre-surgery EMG data) [138], c) performing 
a treatment optimization process with the personalized 
model and selected control approach to identify surgical 
decisions that achieve clear margins while also maximiz-
ing recovery of normal walking function [68], d) having 
the orthopedic oncologist perform the patient’s surgery 
using the optimized surgical plan, and finally e) re-testing 
the patient in a gait lab following plateau in recovery to 
evaluate how well the predicted surgical plan allowed the 
patient to achieve the predicted post-surgery gait motion 
and speed. Since trial and error treatment is not possible 
with orthopedic surgeries, extensive testing, evaluation, 
and refinement of this treatment optimization process 
must be performed before actual surgical plans can be 
designed for actual pelvic cancer patients. To this end, 
the authors are collecting extensive pre- and post-surgery 
gait, EMG, and imaging data sets from this patient popu-
lation, along with the implemented surgical decisions. 
Only after the NMSM Pipeline can predict post-surgery 
walking function reliably for multiple patients when post-
surgery walking function and the implemented surgical 
decisions are known can use of  the NMSM Pipeline be 
considered for this clinical application. A similar process 
would need to be followed for any other clinical problem 
to which the NMSM Pipeline would be applied.

Although the decision to use MATLAB for the NMSM 
Pipeline facilitates development and ease of access for 
users, the decision creates several limitations. C++ and 
other similar compiled programming languages generally 
run significantly faster than interpreted programming 
languages like MATLAB. However, they also introduce 
challenges since few engineering researchers are 
strong C++ programmers, and system-specific build 
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procedures can often be complicated [139, 140]. Due 
to these drawbacks, most biomechanics software 
written in compiled languages can be modified only 
by reporting a bug or requesting a feature and waiting 
for experienced software developers to release a new 
version of the software. The NMSM Pipeline actively 
encourages modifications, bug fixes, and improvements 
through open-source easy-to-modify MATLAB 
toolsets. Other interpreted programming languages like 
Python can struggle with package management, virtual 
environments, and/or dependency version mismatches 
that increase barriers to use. MATLAB’s native debugging 
tools, English-readable error messages, and robust, stable 
core functions allow for development with confidence, 
making the NMSM Pipeline robust to issues common to 
other interpreted languages.

Our hope is that the NMSM Pipeline’s open-source, 
easy-to-use framework will encourage investigations 
by the research community into “best practices” for 
each of the included tools. With the availability of 
seven new tools, each with many optional features, the 
research community is encouraged to explore novel 
approaches for achieving the best results with each tool. 
Investigations into changes in task order, data processing/
organization, cost function error centers and maximum 
allowable errors, among others, will inform the entire 
research community on the best ways to leverage these 
unique tools for successful future research and clinical 
outcomes.

We are already planning future enhancements to 
improve the versatility and applicability of the NMSM 
Pipeline to a broader range of clinical and research 
problems. Potential enhancements would allow greater 
flexibility and customization during use of the Model 
Personalization toolset. Support for compliant tendon 
muscle models and muscle models that differentiate 
between fast and slow twitch fibers in the MTP tool 
could facilitate muscle–tendon model personalization 
and simulation for “fast” activities like running or 
jumping [61, 111]. Support for time-delayed sensory 
feedback models in the NCP tool could enable 
investigation of how spasticity, hyperreflexia, and 
hypertonia interact with incoordination and weakness 
to produce functional impairment in individuals with 
an upper motor neuron pathology. Support for multi-
segment foot models in the GCP tool could facilitate 
higher fidelity simulations of foot biomechanics and 
better reproduction of ground reaction moments. Other 
potential enhancements could facilitate novel use of the 
Treatment Optimization toolset. User-defined controls, 
time-delayed sensory feedback controls, and individual 
muscle controls could facilitate computational design of 
personalized functional electrical stimulation protocols 

[67] and prediction of how downregulating overactive 
reflexes could improve an individual’s movement 
function. Support for user-defined loads as a function 
of model states and controls and making it easy to 
add new states and controls to a DO problem could 
facilitate computational design of personalized passive 
and/or active exoskeletons, which would be added to a 
subject’s personalized model after TO and VO had been 
performed. An enhancement supporting multi-phase 
optimal control problems, where each phase simulates 
a different movement cycle with control information 
shared across phases, could facilitate simulating neural 
feedback mechanisms, neural adaptation, and cycle-
to-cycle motion and control variability. Enhancements 
supporting the use of closed-chain kinematic models 
would facilitate simulation of shoulder models with 
improved kinematic fidelity for surgical, exoskeleton, and 
exercise equipment applications. Support for connecting 
NMSM Pipeline controls to any type of OpenSim 
actuator could allow exploration of alternative optimal 
control problem formulations that significantly improve 
IPOPT convergence rate, especially for TO. Finally, for 
both toolsets, development of easy-to-use MATLAB 
utility functions that automatically process experimental 
movement data and put it into a format that can be used 
directly by NMSM Pipeline tools, without requiring any 
manual data manipulation, would make the toolsets 
accessible to a wider user base.

With all of these potential future enhancements, sev-
eral limitations and challenges in future NMSM Pipeline 
development exist. First, the quality of the personaliza-
tion results found by the Model Personalization tools is 
limited by the quality and quantity of collected experi-
mental data. At this time, it can be challenging to col-
lect all of the experimental data needed to exercise 
all seven NMSM Pipeline tools with a synergy-driven 
neuromusculoskeletal model. Leveraging markerless 
motion capture or inertial measurement units could 
potentially increase the ability of researchers to collect 
the movement data required to perform a high-quality 
NMSM  Pipeline run-through. For Model Personaliza-
tion, because gradient-based optimization techniques are 
used, solutions may become entrapped in a local mini-
mum, though the final solution will still be better than 
the initial guess. The use of muscle activations rather 
than excitations for the NCP tool and the Treatment 
Optimization toolset is another limitation, though back 
calculation of muscle excitations from muscle activations 
could potentially be performed given estimates of acti-
vation dynamics parameter values. Using the OpenSim 
framework through the OpenSim MATLAB API pre-
vents the NMSM Pipeline from using automatic differen-
tiation to speed up optimizations performed during the 
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Model Personalization or Treatment Optimization pro-
cess. Computations leveraging the OpenSim MATLAB 
API are inefficient, and speed limitations inherent to this 
framework cannot be overcome.

Several research teams have released novel software 
tools for the musculoskeletal modeling research 
community [51–58], and these tools could be used 
synergistically with the NMSM Pipeline. Though 
none of these tools possess the broad range of model 
personalization and treatment optimization capabilities 
available in the NMSM Pipeline  (see  Table  7), all of 
these tools facilitate some aspect of creating scaled 
musculoskeletal models that incorporate personalized 
bone geometry and muscle attachment locations. 
Consequently, these tools can provide the scaled 
musculoskeletal model required as a starting point for 
the NMSM Pipeline Model Personalization process. 
For example, NMSBuilder, MAP Client, Torsion Tool, 
Bone Deformation Tool, or OpenSim Creator could be 
used to create personalized bone models from imaging 
data or physical measurements [52–55, 57, 141, 142]. 
SimCP, NMSBuilder, MAP Client, or OpenSim Creator 
could then be used to personalize muscle attachment 
locations [51–53, 57]. Next, SimCP, NMSBuilder, MAP 
Client, AddBiomechanics, or Scale Tool could be used 
to create a scaled OpenSim musculoskeletal model 
possessing the personalized bone geometry and muscle 
attachments [51–53, 56]. In addition, AddBiomechanics 
could potentially be used to perform limited initial 
personalization of joint functional axes [56], while 
SimCP could be used to perform initial personalization 
of optimal muscle fiber lengths, tendon slack lengths, and 
synergy control properties [51].

As shown in Table 7 above, a current limitation of the 
NMSM Pipeline is the lack of functionality to personalize 

a patient’s bone morphology to clinical imaging data. The 
NMSM Pipeline was specifically designed to avoid the 
use of imaging data and require only experimental data 
typically collected in a human movement lab. However, 
personalized bone geometry generated using existing 
methods and software tools [53, 138, 143] can easily be 
incorporated into scaled generic OpenSim models with 
personalized joint functional axes [138] to produce more 
accurate muscle-tendon lengths, moment arms, and joint 
and bone loading scenarios.

Treatment Optimization also does not currently 
include a muscle fatigue model. To date, few muscle 
fatigue models for neuromusculoskeletal modeling 
applications have been published in the literature [144, 
145]. Thus, selecting an appropriate existing muscle 
fatigue model would be challenging. Availability of 
a muscle fatigue model could improve the utility of 
predictive simulations for athletic, other high-intensity, 
or long duration movements, making this research area 
an important one for future investigation.

The NMSM Pipeline’s Treatment Optimization toolset 
has key differences in design and implementation 
from the existing OpenSim Moco tool. While Moco 
is generally the faster software due to its C++-based 
implementation, Treatment Optimization leverages the 
flexibility of MATLAB and GPOPS-II to facilitate novel 
features. Current unique features include user-defined 
functions and the use of  .osimx personalized model 
components, while future unique features could include 
support for multi-phase optimal control problems, as 
discussed above. Treatment Optimization was designed 
to be accessible to both novice and advanced users 
through intuitive XML settings files, whereas Moco users 
typically set up problems through MATLAB or Python 
scripts. Even so, Moco’s implementation facilitates 

Table 7 Comparison of functionality available in the NMSM Pipeline and other musculoskeletal modeling software tools

(1) Personalized bone models produced using image processing and surface fitting software (e.g., Mimics, Materialise, Leuven, Belgium; Geomagic Wrap, Hexagaon 
AB, Stockholm, Sweden) can be added

(2) Some, but not all, of the features of JMP

Software tool Personalize 
bone geometry

Personalize muscle 
attachments

Scale generic 
models

JMP MTP NCP GCP TO VO DO

NMSM Pipeline No (1) No No Yes Yes Yes Yes Yes Yes Yes

SimCP No (1) Yes Yes No Yes Yes No No No No

NMS Builder Yes Yes Yes No No No No No No No

MAP Client Yes Yes Yes No No No No No No No

Torsion Tool Yes No No No No No No No No No

Bone Deformation Tool Yes No No No No No No No No No

AddBiomechanics No No Yes Yes (2) No No No No No No

OpenSim Creator Yes Yes No No No No No No No No

Automatic Scale Tool No No Yes No No No No No No No
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potential use of C++ automatic differentiation libraries to 
improve computational speed for gradient calculations, 
resulting in more efficient optimizations. Lastly, Moco is 
free while both MATLAB and GPOPS-II are commercial 
products with significant academic discounts. By 
incorporating NMSM Pipeline model components into 
native OpenSim in the future, we plan to give users 
the option of using their NMSM Pipeline personalized 
models in either our Treatment Optimization toolset or 
OpenSim Moco, allowing the research community to 
explore the tradeoffs between these two approaches for 
developing predictive simulations.

In conclusion, the NMSM Pipeline represents a 
significant step forward in the ability to personalize 
neuromusculoskeletal computer models to patient 
movement data and then optimize parameters of 
potential treatments using the personalized models. The 
software assembles over two decades of biomechanics 
research into a well-designed and accessible framework 
that makes previously “high end” modeling, simulation, 
and optimization techniques accessible to the entire 
research community. Our hope is that by empowering 
researchers and clinicians working together to explore 
clinically relevant questions and to design novel 
personalized interventions, the NMSM Pipeline will 
bring neuromusculoskeletal computer modeling not only 
to the doorstep of clinical utility but also across it.
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