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Abstract 

Background  Gait quality indices, such as the Gillette Gait Index or Gait Profile Score (GPS), can provide clinicians 
with objective, straightforward measures to quantify gait pathology and monitor changes over time. However, these 
methods often require motion capture or stationary gait analysis systems, limiting their accessibility. Inertial sensors 
offer a portable, cost-effective alternative for gait analysis. This study aimed to evaluate a novel hidden Markov 
model-based similarity measure (HMM-SM) for assessing gait quality directly from gyroscope and accelerometer data 
captured by inertial sensors.

Methods  Walking trials were conducted with 26 lower-limb prosthetic users and 30 able-bodied individuals, 
using inertial sensors placed at various lower body locations. We computed the HMM-SM score along with other 
established inertial sensor-based methods, including the Movement Deviation Profile, Dynamic Time Warping, IMU-
based Gait Normalcy Index, and Multifeature Gait Score. Spearman correlations with the GPS, a validated measure 
of gait quality, were assessed, as well as correlations among the inertial sensor methods. Welch’s t-tests were used 
to evaluate the ability to distinguish between prosthetic subgroups.

Results  The HMM-SM and other inertial sensor-based methods demonstrated moderate-to-strong correlations 
with the GPS (0.49 <|r|< 0.77 for significant correlations). Comparisons between different measures highlighted key 
similarities and differences, both in correlations and in their ability to differentiate between subgroups. Overall, 
the pelvis and lower leg sensors achieved significant correlations and outperformed the upper leg sensors, which did 
not achieve significant correlations with the GPS for any of the signal-based measures.

Conclusion  Results suggest inertial sensors located at the pelvis and lower leg provide valid markers for monitoring 
overall gait quality, offering the potential to develop nonobtrusive, wearable systems to facilitate long-term 
monitoring. Such systems could enhance rehabilitation by enabling continuous gait assessment that can be easily 
integrated in clinical and everyday settings.
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Background
Traditional clinical practice heavily relies on observa-
tional gait analysis, despite its subjectivity and evidence 
indicating limitations in validity, reliability, and respon-
siveness [1, 2]. Instrumented gait analysis systems offer 
a more objective and comprehensive approach for clini-
cians to assess gait patterns, make informed treatment 
decisions, and evaluate intervention effectiveness [3, 
4], ultimately improving patient outcomes [5]. Recent 
interest has turned to developing summarized gait qual-
ity indices as an alternative to assessing individual gait 
parameters. These indices provide straightforward, 
interpretable measures of overall gait patterns, which 
can be used for assessing gait problems and monitoring 
gait changes over time [2, 6]. Widely recognized metrics 
include the Gillette Gait Index (GGI) [7], Gait Devia-
tion Index [8], and Gait Profile Score (GPS) [9], validated 
across various populations with gait disability. However, 
these indices require motion capture systems to accu-
rately measure a full range of lower-body spatiotempo-
ral and kinematic parameters [10]. Such systems are not 
readily accessible, costly and time-intensive to use, thus 
limiting their integration in clinical settings [3, 4]. More-
over, such systems are restricted to the lab or clinic envi-
ronment, which may not be representative of real-world 
gait dynamics [11–13]. Development of methods tailored 
for wearable systems could allow for more convenient 
and portable solutions, facilitating their use in both clini-
cal practice and everyday environments.

Several methods have been proposed for gait quality 
assessment using inertial sensors, which offer advan-
tages such as affordability, portability, and versatility [4, 
14]. The IMU-based Gait Normalcy Index (INI) [10] and 
Multifeature Gait Score (MGS) [15] both employ princi-
pal component analysis (PCA) on a set of gait parameters 
to derive a single gait quality score. The INI measures 9 
parameters (3 spatiotemporal and 6 kinematic), which 
are normalized and transformed into orthogonal fea-
tures using PCA. Deviations from a reference group of 
able-bodied individuals are then evaluated to determine 
overall gait abnormality. In contrast, the MGS defines 6 
aspects of gait: amplitude, temporal, distribution, com-
plexity, symmetry, and regularity. Each aspect incorpo-
rates various gait parameters or properties of the inertial 
sensor signals (e.g., skew, kurtosis, entropy). Mansour 
et  al. then apply a PCA-driven approach to identify the 
most important parameters, which are compared to nor-
mative values to compute an overall gait quality score 
[15].

These methods still have some key drawbacks. Both 
algorithms require accurate and reliable measurement 
of many gait parameters simultaneously, which 
remains a significant challenge for inertial sensor 

systems, particularly for non-sagittal kinematics and 
spatiotemporal variability and symmetry parameters 
[16]. This may also require two or more sensors, 
negatively influencing the comfort and wearability of 
these systems [17, 18]. Furthermore, the INI and MGS 
rely on a predefined set of gait parameters. While some 
parameters such as speed are commonly regarded as 
important to gait quality, parameters of interest vary 
significantly across different populations with gait 
disability [19–21]. Choice of parameters may impact the 
performance of an overall gait quality measure when 
applied to different populations, so these would need 
to be validated in other populations. Alternatively, non-
parameter-based approaches could potentially mitigate 
these challenges by eliminating the need for predefined, 
extensively validated parameter sets and circumventing 
the dependence on accurate parameter measurement for 
gait quality assessment.

Non-parameter-based approaches directly analyze the 
time-series signals from gait analysis systems. Barton 
et al. introduced the Movement Deviation Profile (MDP) 
[22], which evaluates deviations in time-series data using 
a Self-Organizing Map (SOM) trained on normative gait 
patterns. However, the MDP has only been validating 
using the pelvis, hip, knee, and ankle kinematic signals 
obtained from optical motion capture systems, limit-
ing its use with inertial sensors. A robust benchmark for 
many machine learning tasks [23], dynamic time warping 
(DTW) is a distance measure for comparing time-series 
signals which has been used to analyze kinematics in 
Parkinson’s [24] and classify gait changes in lower-limb 
prosthetic users (LLPU) based on gyroscope signals [25]. 
Hidden Markov models (HMM) are another method 
suitable for time-series analysis, and they have been com-
monly used for wearable sensor gait data classification 
[26–28]. In our previous work, we have proposed a hid-
den Markov model-based similarity measure (HMM-SM) 
for unsupervised gait assessment using accelerometer 
and gyroscope data from a small set (1 to 2) of inertial 
sensors. The HMM-SM involves training HMMs on the 
inertial sensor data and measuring the similarity of these 
HMMs to quantify overall deviation between gait pat-
terns. Previously, we validated that the HMM-SM could 
assess changes from an individual’s baseline gait patterns 
[29]. The current study aims to assess the performance of 
the HMM-SM for assessing gait normalcy and gait qual-
ity using inertial sensors in LLPU. This is accomplished 
through 2 main objectives. (1) Compare the HMM-SM 
to a validated gait quality measure to explore the clini-
cal relevance of the HMM-SM. This study used the GPS, 
which is a widely cited gait quality index that has been 
validated in multiple populations, including LLPU [30–
32]. (2) Compare other inertial sensor-based methods to 
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the GPS to benchmark HMM-SM performance. As part 
of objectives 1 and 2, we also compared the scores to two 
functional gait measures, the prosthetic evaluation ques-
tionnaire mobility section (PEQ-MS) [33] and locomotor 
capabilities index (LCI-5) [34] to further explore any rela-
tionships between the gait quality methods and measures 
of amputee gait function. To our knowledge, this is the 
first study to develop and evaluate a non-parameter-
based, inertial sensor gait quality assessment method 
with respect to a validated gait quality index such as the 
GPS. Additionally, no previous studies have compared 
inertial sensor gait quality measure with existing vali-
dated indices or compared multiple inertial sensor-based 
methods. Therefore, this research provides valuable evi-
dence regarding the validity and relative performance 
of the HMM-SM and other methods—both parameter-
based and non-parameter-based—for gait quality assess-
ment using inertial sensor data.

Methods
Participants
26 LLPU completed the study protocol (23 unilateral, 3 
bilateral). Individuals were included if they were above 
the age of 5  years and could ambulate independently 
on level ground. Participants included 4 types of 
prosthetic users: transtibial amputees (TT), transfemoral 
amputees (TF), Van-Nes rotationplasty (VN), and 
individuals with limb shortening/limb length difference 
(LS). 30 able-bodied participants were also recruited. 
Able-bodied participants were defined as individuals 
exhibiting no obvious gait abnormalities and having 
no previous history of musculoskeletal, neurological, 
or cardiovascular disorders. Able-bodied participants 
were used to form the normative group (i.e., reference) 
that all the gait quality measures used to calculate their 
scores. This is comparable to initial validations for the 
GGI and GPS, which used 24 and 38 participants for 

their reference group, respectively [7, 35]. Characteristics 
for the LLPU and able-bodied participants are shown 
in Table  1, including characteristics for each of the 
LLPU subgroups. Informed consent was obtained from 
each participant at the beginning of the data collection 
session. The recruitment and experimental procedure 
were approved by the Research Ethics Board at Holland 
Bloorview Kids Rehabilitation Hospital (REB-0176).

Data acquisition
Participants were instrumented with the Xsens Awinda 
system (Xsens Technologies BV, Enschede, Netherlands) 
and wore 8 inertial sensors located on the lower body and 
sternum, as shown in Fig. 1. This system has been well-
validated for kinematic measurements, demonstrating 
excellent reliability in the sagittal plane and 

Table 1  Participant demographics

Aids, participants using walking aids (e.g., cane, walker, etc.); Time, time since amputation (same as age if congenital); σ, standard deviation

TT transtibial amputee, TF transfemoral amputee, VN Van Nes rotationplasty, LS limb shortening, also known as limb length difference, LLPU lower-limb prosthetic user

Statistic TT TF VN LS LLPU Able-bodied

Count n 10 7 6 3 26 30

Aids n 1 0 0 0 1 0

Gender

 Female n 8 4 4 0 16 21

 Male n 2 3 2 3 10 9

Age (years) Mean (σ) 29.9 (18.5) 34.6 (13.8) 16.0 (6.2) 20.3 (13.3) 26.8 (15.6) 25.2 (6.9)

Height (m) Mean (σ) 1.63 (0.12) 1.69 (0.12) 1.57 (0.15) 1.44 (0.24) 1.61 (0.15) 1.70 (0.08)

Weight (kg) Mean (σ) 73.8 (21.9) 63.4 (14.2) 55.5 (16.1) 38 (18.5) 62.7 (20.9) 66.2 (10.6)

Time (years) Mean (σ) 16.1 (13.9) 12.8 (11.6) 4.3 (4.8) 19.3 (14.6) 12.8 (12.3) N/A

Fig. 1  Example participant setup for the Xsens Awinda. Able-bodied 
and LLPU participants followed the same setup. Sensors on bridge 
of both feet, lower legs below the knee (shank), outside of upper legs 
parallel with sagittal plane (thigh), center of pelvis on the sacrum, 
and center of sternum. Free acceleration and angular velocity were 
used to train the ML models and calculate signal parameters
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fair-to-excellent reliability in the other planes [36]. The 
placement of the sensors followed anatomical markers 
suggested in the Xsens user manual [37]. The Xsens 
collected orientation-free accelerometer (range ± 16  g) 
and angular velocity data (range ± 35  rad/s) as well as 
foot contacts, 3D position and orientation, and kinematic 
signals at 100 Hz. The accelerometer and angular velocity 
signals were down-sampled to 40  Hz and used by the 
signal-based ML models as well as to calculate any signal 
parameters (e.g., skew, kurtosis), while the foot contact, 
position, orientation, and kinematics were used to 
calculate spatiotemporal and kinematic gait parameters.

All participants completed walking trials along a 15 m 
straight pathway, stopping and turning around at either 
end. The first and last gait cycles of each pass were 
excluded to ignore the starting and stopping portion. 
LLPU participants completed 20 passes, which was able 
to capture at least 100 steady-state gait cycles for each 
participant. 100 gait cycles were sampled randomly from 
each of the LLPU participants for calculating the gait 
quality scores. Able-bodied participants were instructed 
to complete 10 passes, which resulted in at least 50 gait 
cycles. We randomly sampled 10 gait cycles from each 
able-bodied participant and aggregated these to form 
the normative/reference group used for each of the gait 
quality measures, similarly to the process by Wang et al. 
[10].

LLPU participants also completed 2 self-report 
functional measures, the Prosthesis Evaluation 
Questionnaire-Mobility Section (PEQ-MS) and the 
Locomotor Capabilities Index (LCI-5). These were 
included to assess relationships between gait mobility 
capacity as measured by the questionnaires and outputs 
from the gait quality scores, and to potentially provide 
more information concerning the clinical relevance of the 
inertial sensor methods.

Gait quality measures
Multiple gait quality measures were used for this study. 
All methods were able to provide a continuous output 
of gait similarity or distance (as opposed to a discrete 
classification scheme), analogous to the previously 
validated gait indices such as the GPS, GDI, and GGI. 
The primary inertial sensor-based method used was the 
HMM-SM, which was compared against 4 other inertial 
sensor-based measures. Detailed descriptions for these 
methods are provided in the subsequent sections. We 
categorize inertial sensor-based methods into two types: 
signal-based and parameter-based. Signal-based methods 
utilize raw time-series data from wearable sensors (such 
as gyroscopes and accelerometers) directly as inputs 
to the model for determining gait quality scores, and 
includes the HMM-SM, MDP, and DTW. In contrast, 

parameter-based methods involve calculating discrete 
parameters which can be derived from inertial sensor 
data, which are then used to assess overall gait quality, 
and include the INI and MGS.

For this study, the GPS was used as the gold standard 
gait quality measure to evaluate the performance of the 
inertial sensor gait quality methods. It was calculated as 
outlined in literature [35] using kinematic data obtained 
from the Xsens. Specifically, the GPS takes into account 
the pelvic orientation, foot progression, and joint angles 
from the hips, knees, and ankles. A Euclidean distance is 
calculated throughout the gait cycle between a partici-
pant’s gait and a set of normative gait (e.g., able-bodied 
individuals) to determine a gait deviation score. To calcu-
late an individual’s GPS score, we used the mean score of 
the 100 sampled gait cycles.

All the gait quality measures in this study, including 
the GPS, derive their score by comparing LLPU 
participant data to a normative dataset representing 
ideal gait, typically able-bodied gait. The normative (i.e., 
reference) dataset in this study was formed as detailed 
in the  previous section (Data acquisition) using the 10 
randomly sampled gait cycles from each able-bodied 
participant.

Hidden Markov model similarity measure (HMM‑SM)
The HMM-SM leverages a computationally low-cost 
method developed by Sahraeian and Yoon [38] to 
assess the similarity of HMM models. Each HMM 
� is characterized by 2 main matrices A and B. A is an 
N  ×  N matrix where each element ai,j represents the 
probability the system would transition from state i 
to state j at a given time. The number of states, N, is a 
hyperparameter of the system. B is the emissions 
probability matrix consisting of N elements b1, . . . , bN 
where each element represents the likelihood of 
system outputs for a given state. These likelihoods are 
represented by a µ (mean) and covariance matrix. To 
quantify the similarity of two HMMs ( �a and �b ), we first 
calculate a state-correspondence matrix Q where each 
element qi,j indicates the overall similarity between the 
emission matrix elements ba[i]and bb[j] , evaluated using 
symmetric Kullback–Leibler divergence. Subsequently, 
a similarity measure S(�a||�b) is calculated based on the 
sparsity of Q:

where ri is the i-th row of Q, cj is the j-th column of Q, 
and M and M′ are the number of rows and columns in 
Q. H(u) represents the normalized Gini Index which 
returns the sparsity of vector u from 0 to 1. A similarity 
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score, S(�a||�b) , closer to 1 indicates a higher degree of 
similarity between the HMMs. Using these properties, 
we can compare individual’s gait to that of ideal or nor-
mative gait to calculate a single gait quality score, where 
greater similarity to normative gait represents higher gait 
quality.

We conducted preliminary validation simulating gait 
perturbations in able-bodied individuals, which provided 
insights into hyperparameters and sensor configurations 
to use for the HMM-SM [29]. For this study, 5-state 
HMMs were used. Experiments demonstrated including 
multiple gait cycles increased HMM training consistency. 
This is also done for other HMM-based methods 
such as in Cuzzolin et  al. which uses gait data from 
a 10  m pass to train their HMM models [26]. For each 

participant, we transformed their randomly sampled set 
of 100 gait cycles into a set of multi-cycle sequences. 
This was accomplished by using a sliding window to 
iteratively select groups of 10 gait cycles, which were 
then concatenated along the time axis. The concatenated 
sequences were used to train the HMM model for each 
participant ( �p ). Each HMM, �p , was then compared to 
the HMM trained on the normative dataset ( �control ) 
using the similarity measure from Eq.  1 to determine 
the participant’s gait quality score. An overview of this is 
provided in Table 2, along with the other inertial sensor-
based gait quality measures.

For this study, we tested three sensor configurations 
identified from preliminary investigations: pelvis, 
combined upper leg signals, and combined lower leg 

Table 2  Summary of the inertial sensor-based gait quality measures

Includes features used by each method and a summary of how the gait quality score is calculated. Measures split into parameter-based (top) and signal-based 
measures (bottom)

INI IMU-based Gait Normalcy Index, MGS Multifeature Gait Score, HMM-SM hidden Markov model-based similarity measure, MDP Movement deviation profile, 
DTW Dynamic time warping, GD gait cycle duration, SL stride length, PSP percentage swing phase, MV maximum ankle velocity, MH maximum ankle height, MHD 
ankle horizontal displacement at MH, MAB maximum ankle abduction, MAD maximum ankle adduction, SRM shank range of motion in swing phase, PCA principal 
component analysis

Gait measure Gait features used Data analysis and score calculation

INI (Parameter-based) 9 gait parameters: 3 spatiotemporal (GD, SL, and PSP) and 6 
kinematic (MV, MH, MHD, MAB, MAD, and SRM)

- Determine eigenvalues and eigenvectors based 
on normative gait using PCA
- Transform individual and normative gait parameters into new 
PCA-derived coordinate system
- Euclidean norm used to calculate distance 
between normative and individual gait (i.e., overall deviation)

MGS (Parameter-based) 6 aspects of gait (amplitude, temporal distribution, 
complexity, symmetry, and regularity), each comprised 
of a mix of spatiotemporal or signal-based (e.g., skew, 
kurtosis) gait parameters

- Calculate eigenvalue/eigenvector pairs, keeping those 
with eigenvalue ≥ 1
- Per each remaining eigenvector, determine correlation 
of gait parameters. Keep gait parameter from each “aspect” 
with the highest correlation
- Using reduced parameter set, calculate z-scores of each 
parameter based on mean and standard deviation 
of the normative gait set. Standardize these between 0 and 1
- Using standardized deviation scores per parameter, calculate 
mean “aspect” scores as well as the overall mean deviation

HMM-SM (Signal-based) Triaxial accelerometer and gyroscope signals from lower-
body inertial sensors

- Each participant’s gait data transformed into multi-gait 
cycle sequences, using a sliding window to iteratively select 
groups of 10 gait cycles which are subsequently concatenated 
along the time axis. Similar to that used in our previous work 
[29]
- Do same for normative dataset (able-bodied gait)
- Train HMM on the normative able-bodied dataset ( �control)
- Train HMM on the participant’s transformed dataset ( �p)
- Compute similarity between participant and normative 
HMMs,S(�p||�control)

MDP (Signal-based) Triaxial accelerometer and gyroscope signals from lower-
body inertial sensors

- Train self-organizing map (SOM) on the normative data
- For each time point in gait cycle, find best-matching unit 
in self-organizing map based off Euclidean norm distance
- Overall score equals mean distance across the gait cycle

DTW (Signal-based) Triaxial accelerometer and gyroscope signals from lower-
body inertial sensors

- Compute distance between each participant gait 
cycle and able-bodied gait cycle using tslearn algorithm 
for multivariate time series [39]
- Determine the mean distance for all the comparisons 
to determine overall DTW-based score
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signals [29]. The single-sensor data were 6 × T arrays 
(tri-axial gyroscope and accelerometer signals, over T 
time points following the concatenation process). This 
meant for the pelvis configuration, the HMMs were 
trained on 6 × T arrays, whereas for the combined sensor 
configurations (upper leg and lower leg), the sensor data 
was stacked such that the HMMs were trained on 12 × T 
arrays.

Other inertial sensor gait quality measures
In addition to our method, the HMM-SM, we calculated 
scores for the INI, MGS, and MDP to serve as 
benchmarks against which to compare the HMM-SM’s 
performance. All methods were calculated as outlined 
in literature [10, 15, 22]. As an additional benchmark, 
we also evaluated DTW, which is a common baseline for 
evaluating time-series model performance [23]. For this 
work, we computed an average DTW distance between 
LLPU and able-bodied gait cycles. This was done using 
the tslearn library for determining the DTW distance of 
multivariate time series [39]. Table 2 provides a summary 
of the processes for the inertial sensor-based methods.

Neither the INI nor MGS publications included 
whether the right or left side were used for calculating the 
non-symmetry parameters, so gait parameters from the 
prosthetic side were used for unilateral prosthetic users, 
while the averages of right and left were used for bilateral 
prosthetic users. For the signal-based measures, the MDP 
and DTW, we tested the same sensor configurations as 
for the HMM-SM (pelvis, upper legs, and lower legs). For 
the MDP, instead of using the different kinematic signals 
as demonstrated by Barton et  al. [22], the SOM was 
trained using the tri-axial accelerometer and gyroscope 
signals. To our knowledge, the MDP has yet to be 
evaluated using just wearable sensor signals. To calculate 
the INI, MGS, and MDP scores for each participant, we 
averaged the scores of the 100 sampled gait cycles, the 
same as for the GPS.

Data analysis
The Spearman’s rank correlation coefficient was used to 
evaluate the relationship between the various gait quality 
measures used in the study. The primary correlations of 
interest were between the GPS and the HMM-SM from 
the 3 sensor locations as well as between the GPS and 
other inertial sensor-based gait quality measures. These 
were used to evaluate concurrent validity with respect 
to the GPS and benchmark the performance of the 
HMM-SM.

Because of how the scores are constructed, we would 
expect the HMM-SM to have a negative correlation with 
the GPS (i.e., r-value < 0). This is due to the HMM-SM 

being a similarity measure between 0 and 1, where a score 
of 1 indicates no deviation, and decreasing scores (closer 
to 0) indicate greater deviation (i.e., lower similarity) with 
respect to the reference dataset. This is opposite to the 
GPS, whose range starts at 0 (no deviation) and in which 
increasing scores correspond to greater deviation with 
respect to the reference gait. Like the GPS, the remaining 
inertial sensor-based measures (MDP, DTW, INI, and 
MGS) should anticipate positive correlations with the 
GPS, as they are all formulated such that a score of 0 
indicates no deviation, and increasing scores correspond 
to greater deviation from reference gait.

We also calculated the correlation coefficients 
between the different inertial sensor-based measures 
to identify any significant relationships. Lastly, we 
assessed correlations between the inertial sensor-
based methods and the self-report measures. For this 
study, we considered an absolute value of r less than 
0.1 as negligible correlation, 0.1–0.4 as weak, 0.4–0.7 
as moderate, 0.7–0.9 as strong, and greater than 0.9 
as very strong [40]. An alpha value of 0.05 was used to 
determine significance for all the statistical tests. To 
mitigate the risks arising from multiple comparisons, we 
applied a Benjamini-Hochberg (BH) correction with a 
false discovery rate (q) of 0.05 to determine significance 
of the correlations [41]. We used the protocol described 
by Benjamini and Hochberg [42] to calculate adjusted 
p-values which we report in this paper.

We also aimed to evaluate the discriminative validity by 
assessing differences in the gait quality measures between 
the different LLPU subgroups (TT, TF, VN, and LS). A 
Shapiro–Wilk test was used to evaluate normality of the 
data within each subgroup. A repeated measures ANOVA 
(RM-ANOVA) was used to determine whether any 
differences were present between the different subgroups 
for each of the inertial sensor-based algorithms. Post-hoc 
Welch’s t-tests were then performed to identify which 
groups significantly differed (alpha = 0.05).

Results
Correlations between gait quality measures
We analyzed eleven scores derived from inertial sensor 
gait quality measures in relation to the GPS. This includes 
three sensor configurations for the HMM-SM, MDP, and 
DTW, and one score each for the INI and MGS. Figure 2 
displays the comparison of inertial sensor scores with 
GPS results, and Table  3 summarizes the Spearman’s 
rank correlation tests comparing all the different gait 
quality measures. Because the HMM-SM is a similarity 
measure, higher scores correspond to better gait quality 
(i.e., greater similarity to reference dataset). In contrast, 
higher scores for the other measures (INI, MGS, MDP, 
DTW, and GPS) should reflect worse gait quality as it 
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HMM-SM : Upper Legs HMM-SM : Lower Legs HMM-SM : Pelvis

MDP : Upper Legs MDP : Lower Legs MDP : Pelvis
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Fig. 2  Correlations between the GPS (horizontal axis) and inertial sensor-based measure scores (vertical axis). The HMM-SM, DTW, and MDP 
algorithms are grouped, with plots for each of the sensor configurations evaluated in the study (upper leg sensors, lower leg sensors, and pelvis 
sensor). Plots with bolded correlation and adjusted p-values indicate significant correlation with the GPS (α = 0.05) for that configuration. R-values 
and p-values obtained using Spearman’s rank correlation coefficient as outlined in the methodology
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indicates increased gait deviation. The results showed 
many significant correlations between the inertial 
sensor-based measures and the GPS. Additionally, there 
were many correlations between the different sensor 
configurations and between the different inertial sensor-
based methods.

All the signal-based measures had at least one sensor 
configuration which was significantly correlated with 
the GPS, and these were all moderate correlations. The 
HMM-SM lower leg configuration showed a moderate 
negative correlation with the GPS (r = −0.55, p = 0.011). 
Other time-series measures which were significantly 
correlated with the GPS were the DTW lower leg 
(r = 0.68, p < 0.001), DTW pelvis (r = 0.57, p = 0.007), 
MDP lower leg (r = 0.49, p = 0.028), and MDP pelvis 
(r = 0.57, p = 0.008). HMM-SM and MDP exhibited 
comparable performance, with moderate correlations 
with the GPS for the lower leg configurations. Among 
the signal-based measures, DTW demonstrated the 
strongest correlation with the GPS, with the lower leg 
configuration results approaching a strong correlation. 
In general, across the signal-based measures (HMM-SM, 
MDP, and DTW), the sensor location on the upper legs 
performed worse than the pelvis and the lower limbs.

The INI demonstrated the strongest correlation with 
the GPS (r = 0.76, p < 0.001), while the MGS showed a 
moderate negative correlation (r =  −0.49, p = 0.029). 
Notably for the MGS, the negative correlation was 
opposite what would be expected, indicating MGS scores 
improved as gait kinematics deviated from the reference 
dataset. This was the only measure to report significant 
correlations in the opposite direction as expected.

There were also many correlations among the 
different inertial sensor configurations, as seen in the 
Table  3 non-GPS columns. Comparing different sensor 
configurations with a given algorithm (e.g., DTW 
upper leg vs. DTW pelvis), the MDP exhibited strong 
correlations between the sensor configurations, while 
DTW exhibited moderate correlation between upper and 
lower leg (r = 0.61) and strong correlations between the 
pelvis and both the upper and lower leg configurations 
(r = 0.73 and r = 0.72, respectively). The HMM-SM sensor 
configurations did not show significant correlations with 
each other.

Comparing different measures, the HMM-SM lower 
leg configuration showed moderate correlation with 
the MDP pelvis, DTW lower leg and pelvis, INI, and 
the MGS (HMM-SM Lower column, Table  3). The 
MDP and DTW measures were highly correlated, with 
significant correlations observed for all the MDP and 
DTW comparisons. Only the comparison between MDP-
Upper and DTW-Lower was not strong (r = 0.59), and the 
MDP-DTW upper and MDP-DTW pelvis correlations 

were both very strong (r > 0.90). The DTW lower leg 
configuration also showed moderate correlations with 
both the parameter-based measures (DTW Lower 
column, Table  3). The INI and MGS had a significant 
negative correlation.

Lastly, we compared the inertial sensor-based scores to 
the results from the functional measure questionnaires 
– the PEQ-MS and LCI-5 – to identify any relationships 
between the measures and assess whether the inertial 
sensor-based measures could be used to estimate 
functional ability in LLPU. As shown in Table 4, neither 
functional measure demonstrated significant correlations 
with any of the gait quality measures.

Differences between prosthetic levels
We evaluated differences among prosthetic levels 
by analyzing gait quality measures across different 
prosthetic user types (TT, TF, VN, and LS). Mean 
and standard deviation values for each subgroup are 
presented in Fig. 3. Welch’s t-tests were used to identify 
significant differences. The results from the Welch’s 
test are presented in Table  5 and demonstrate that the 
gait quality measures varied in which subgroups they 
differentiated between.

The GPS detected 2 subgroup differences. Based 
on the GPS the VN group had significantly worse gait 
quality compared to both the TT (p = 0.008) and TF 
(p = 0.006) groups, as evidenced by higher scores. The 
mean GPS score for the LS group was 5.5° higher than 
those of the TT or TF groups, well above the minimal 
clinically important difference of 1.7° in LLPU identified 
by Carse et  al. [30]. However, the differences between 
the TT-LS and TF-LS groups were borderline significant 
(p = 0.065 and p = 0.062, respectively), but did not reach 
the significance threshold of 0.05, potentially due to the 
smaller sample size of the LS group (n = 3).

All measures detected differences between at least 
one set of subgroups. The HMM-SM captured a total 
of 5 significant sub-group differences, across 2 sensor 
locations, which was the most among the signal-
based measures. Specifically, for the HMM-SM lower 
leg configuration, LS participants scored significantly 
lower than the TT and VN groups, while for the pelvis 
configuration, LS participants scored lower than all 
three other prosthetic types. The DTW lower leg 
configuration best matched the GPS as it showed the 
same 2 significant differences as the GPS, between the LS 
group and both the TT and TF participants. The other 
two locations showed no differences. The MDP only 
revealed one significant sub-group difference in total 
across all three sensor locations, between TF and VN. In 
general, across the signal-based measures, the upper legs 
configuration performed worse than the pelvis and lower 
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legs, as none of the HMM-SM, DTW, or MDP upper 
leg configurations revealed any significant differences 
between the prosthetic types. The INI detected 3 
differences, including between the LS group and both 

the TT and TF groups, as well as between the TT and TF 
groups. The MGS revealed a single difference, between 
TF and VN.

GPS (Reference) Parameter-Based MeasuresINI MGS

HMM-SM : Lower LegsHMM-SM : Upper Legs HMM-SM : Pelvis

MDP : Lower LegsMDP : Upper Legs MDP : Pelvis

DTW : Lower LegsDTW : Upper Legs DTW : Pelvis

Sc
or
e

Sc
or
e

Sc
or
e

Sc
or
e

Fig. 3  Results from post-hoc t-tests comparing the different amputee levels. Significance bars indicate levels where statistical significance 
was detected, with corresponding significance level (*≤0.05, **≤0.01, and ***≤0.001). The GPS (reference measure) results are shown in the top left. 
The VN group scores were significantly higher than TT or TF amputees. Differences between subgroups were also found in the following inertial 
sensor configurations: INI, MGS, HMM-SM Lower Leg, HMM-SM Pelvis, MDP Lower Leg, and DTW Lower Leg. TT Transtibial, TF Transfemoral, VN Van 
Nes, LS Limb Shortening
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There were no clear patterns for which subgroups 
the measures discriminated, as these varied between 
measures and sensor locations. For example, the 
HMM-SM only detected differences between LS and 
the other subgroups, while DTW results differentiated 
between TF and VN. TF-VN difference was most 
commonly identified (4 instances), followed by 3 for 
TT-LS, 1 for TT-TF, 2 for the remaining subgroups.

We also explored partitioning the LLPU into only two 
groups. To do this, we considered the VN and the TT 
as one group and the LS and TF as the second group. 
For instance, some studies consider VN also as below 
knee amputees in their analysis [43]. However, in this 
configuration, there were no statistically significant 
differences between the two groups for any of the gait 
quality measures.

Discussion
This study aimed to evaluate the proposed HMM-SM 
as a novel method for assessing gait quality using 
inertial sensor signals. To accomplish this, we examined 
the concurrent validity of the HMM-SM comparing 
its results with those obtained from the GPS, which 
were derived from the same walking trials. We also 
compared the HMM-SM and GPS with other inertial 
signal-based gait quality measures and time-series 
analysis techniques from the literature to benchmark 
its performance against existing methods. Additionally, 
we investigated the discriminative capabilities of these 

methods by analyzing how they differentiated between 
different types of prosthetic users. At a high level, all of 
the signal-based measures including the HMM-SM were 
at least moderately correlated with the GPS and were 
able to discriminate between at least 2 LLPU subgroups. 
Hence, these findings provide both confirmatory and 
new evidence (particularly in the case of HMM-SM) that 
inertial sensor signals could be used to assess overall gait 
quality. A summary of advantages and disadvantages of 
the inertial sensor-based algorithms, based on findings 
from the study, is included in Table  6 (excluding the 
MGS), with in depth discussion in the following sections.

Inertial sensor‑based measures for gait quality assessment
Among the signal-based methods, DTW exhibited 
the strongest correlations with the GPS, suggesting 
that even a relatively simple time-series analysis 
method like DTW could be used to evaluate overall 
gait quality. Studies in other domains such as time-
series classification demonstrate that even 1-Nearest 
Neighbor DTW is a robust benchmark, with state-of-
the-art algorithms failing to surpass it or achieving only 
marginal accuracy improvements [23, 44]. However, the 
HMM-SM may offer additional advantages over DTW 
beyond correlation with the GPS. For example, previous 
studies have used HMMs for gait event identification and 
gait phase analysis [45–47]. Therefore, the HMM-SM 
framework could be used to assess overall gait quality 

Table 5  Comparison of prosthetic levels

Results from post hoc Welch’s t-test comparing the different prosthetic levels. p-values for configurations which were statistically significant are bolded and 
underlined. X–Y indicates the two levels being compared. Differences per Configuration indicates the number of differences identified by each algorithm/sensor 
configuration (count of significant results in each row). Differences per Subgroup indicates number of algorithms that showed significant difference for each of the 
subgroup comparisons (count of significant results in each column)

TT Transtibial, TF Transfemoral, VN Van Nes, LS Limb Shortening

Algorithm TT–TF TT–VN TT–LS TF–VN TF–LS VN–LS Differences 
per 
configuration

GPS 0.360 0.008 0.065 0.006 0.062 0.187 2

HMM-SM upper 0.067 0.747 0.441 0.093 0.068 0.692 0

HMM-SM lower 0.235 0.472 0.025 0.529 0.060 0.046 2

HMM-SM pelvis 0.496 0.942 0.012 0.712 0.022 0.027 3

MDP upper 0.780 0.316 0.465 0.292 0.409 0.923 0

MDP lower 0.611 0.098 0.327 0.040 0.263 0.837 1

MDP pelvis 0.875 0.233 0.200 0.349 0.214 0.422 0

DTW upper 0.736 0.365 0.347 0.339 0.305 0.484 0

DTW lower 0.447 0.016 0.192 0.003 0.153 0.743 2

DTW pelvis 0.908 0.246 0.114 0.383 0.143 0.397 0

INI 0.014 0.229 0.010 0.059 0.006 0.565 3

MGS 0.569 0.060 0.783 0.006 0.440 0.246 1

Differences per Subgroup 1 2 3 4 2 2
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while simultaneously allowing for extraction of gait 
events and parameters which may be clinically useful.

Results suggest that optimal locations for assessing 
gait patterns using inertial sensors are the lower legs and 
pelvis. DTW and MDP both demonstrated significant 
correlations with the GPS for lower leg and pelvis 
configurations. The HMM-SM only showed significant 
correlations for the lower-leg, but this is in line with 
findings from initial investigations with able-bodied 
individuals that showed decreased HMM-SM reliability 
using the pelvis compared to both the upper leg and 
lower leg configurations [29]. None of the signal-based 
algorithms (HMM-SM, MDP, and DTW) showed 
significant correlation with the GPS using upper leg 
sensors. Although sensor placement and quantity vary 
across gait studies, results from this study support 
previous literature which indicates that the most 
common locations are the pelvis and lower legs [48–50].

Comparing GPS correlations between the signal-based 
and parameter-based measures, the HMM-SM and other 
signal-based measures (MDP and DTW) outperformed 
the MGS, whose scores improved as GPS scores 
worsened. In contrast, the INI showed the strongest 
correlation among the inertial sensor-based measures 
(r = 0.76, p < 0.001), indicating it could be a valid measure 
of gait quality. This was notable given that the INI uses a 
different set of gait parameters than the GPS, suggesting 
that a PCA-based approach can effectively quantify 
overall gait deviation. However, the MGS, which also 
used a PCA-based approach, decreased as the GPS and 
INI scores worsened. This discrepancy highlights how 
the choice of parameters and techniques can significantly 
impact the performance of parameter-based gait quality 
measures. Variations in parameter importance across 
different disability populations could contribute to this. 
Wang et  al. suggest that parameters for a gait quality 
measure may need adjustments for different populations, 

particularly since symmetry measures, which are crucial 
for hemiplegic or asymmetric gait, were not included in 
the INI [10].

The HMM-SM, DTW, and MDP methods, which 
do not require extensive gait parameter validation 
and tuning, could be more adaptable across clinical 
populations. This would also reduce the reliance on 
accurately and reliably measuring a broad set of gait 
parameters. This is advantageous given that wearable 
systems can be less accurate than non-wearable systems, 
require complex algorithms for parameter assessment 
(e.g., obtaining the motion trajectory and kinematics for 
the INI), and typically assess a limited number of gait 
parameters [1, 3].

Correlations between inertial‑sensor based methods
None of the HMM-SM sensor configurations showed 
significant correlations with each other. We might have 
expected some correlations given that movements in 
the pelvis, upper legs, and lower legs might impact each 
other. Baker et al. observed in their original validation of 
the GPS that individual component scores for different 
kinematics did not strongly correlate with each other 
[35]. This suggests that changes in gait patterns may 
have varied effects across different lower body locations 
and movement planes, potentially explaining the lack of 
significant correlations among HMM-SM configurations.

In contrast, comparing the sensor configurations 
within each of the DTW and MDP results, the three 
configurations were highly correlated with each 
other. The DTW lower leg versus upper leg exhibited 
a moderate correlation (r = 0.61), while the other 
comparisons all showed strong correlations. This 
indicates the HMM-SM may be more sensitive to changes 
in sensor configuration, whereas DTW and MDP are 
relatively invariant to sensor placement. Several factors 
could explain this. Firstly, the HMM training might be 

Table 6  Summary of characteristics for inertial sensor-based gait quality measures

Algorithm Potential advantages Potential disadvantages

HMM-SM - Could allow for additional analysis of spatiotemporal gait features
- Particularly effective at discriminating compensatory strategies 
employed by limb-difference (e.g., at the pelvis)

- Inconsistent performance depending on sensors used

MDP - Can form deviation curve throughout the gait cycle, as done in [22]
- Similar performance using different sensors
- Only need to iterate over control data once, when training the SOM

- Very similar performance as DTW with added algorithmic 
complexity

DTW - Closely approximates GPS performance
- Similar performance using different sensors
- Simple to calculate

- Computationally expensive for larger datasets

INI - Closely approximates GPS performance - Requires accurate estimation of multiple kinematic 
and spatiotemporal parameters
- No inclusion of symmetry parameters
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more inconsistent due to limitations in sample size or 
issues with hyperparameter selection. This inconsistency 
can affect the performance of HMM-SM independently 
of any changes in the sensor configuration. Another 
reason could be the fundamental differences between 
HMM-SM and the other methods. DTW and MDP 
are relatively simple distance measures that directly 
compare the time-series data. In contrast, HMM-SM 
involves a more complex analysis, as it compares the 
learned patterns from the sensor signals through a 
probabilistic model. This more abstract approach might 
make HMM-SM more sensitive to variations in sensor 
configuration. The increased consistency across the 
sensor configurations in the DTW and MDP algorithms 
could offer greater flexibility when integrating them into 
wearable systems. This flexibility might allow for sensor 
placement decisions based on other factors such as type 
of ambulatory analysis [51], accurate gait event detection 
[14], or activity analysis [52].

Correlations between the inertial sensor methods 
suggest some convergent validity among the different 
inertial sensor-based measures, indicating that various 
methods can extract similar relevant features from 
gait. For example, the HMM-SM lower leg results 
were significantly correlated with both the MDP pelvis 
configuration and the DTW lower leg and pelvis 
configurations. The DTW lower leg configuration 
showed significant correlation with the INI, suggesting 
that parameter-based and inertial signal-based 
approaches can provide similar evaluations of LLPU gait. 
This supports the idea that we can use inertial signals to 
implicitly assess changes in overall spatiotemporal and 
kinematic gait aspects such as those used by the INI and 
the GPS.

The DTW and MDP algorithms were highly correlated 
with each other. At a conceptual level, the MDP is 
similar to DTW in that for each point along the gait 
cycle, the MDP uses Euclidean distance to find the 
closest matching point in the SOM trained on reference 
gait. DTW employs an analogous strategy but includes 
additional constraints on the warping window (i.e., how 
far before or after to search for matching points) and 
the allowable warping path [53]. Although training a 
SOM can be computationally expensive [54], it needs 
to be trained only once on the reference dataset. Thus, 
the trade-off between computational complexity and 
performance should be evaluated when determining the 
most applicable method.

Correlations with self‑report measures
Neither the LCI-5 nor the PEQ-MS exhibited significant 
correlations with the gait quality measures including 
GPS. This could be due to the sample size, and larger 

sample sizes may be needed to reveal potential existing 
correlations. However, previous studies have underscored 
the potential differences between gait quality measures 
and measures of gait function or self-reported capacity 
[55, 56]. While some research has indicated positive 
correlations between improvements in gait quality 
measures (e.g., quantified gait parameters, summarized 
gait indices like the Gait Deviation Index) and functional 
assessments like the Functional Gait Assessment 
[57] or the Timed Up and Go test [55], others have 
found low correlates between gait measures and with 
functional measures like gait speed [56] or self-report 
measures of ambulation [55]. The results of this study 
further highlight the distinction between gait quality 
and ambulatory function or capacity, emphasizing the 
importance of developing methods that can monitor gait 
quality over the long term.

Gait quality results across prosthetic levels
All measures (at various sensor locations) detected 
differences between at least one set of subgroups. The 
HMM-SM pelvis configuration and INI discriminated 
between the most sub-groups (n = 3). The rest of the 
measures including the GPS discriminated between one 
or two sub-groups. Additionally, if we consider only 
tracking a single sensor location (in cases where the goal 
is to maximize wearability of the gait assessment system), 
then the HMM-SM is the only measure to discriminate 
between 3 subgroups.

The variability in the discriminative performance 
among gait quality measures correlated with the 
GPS further underscores that while different inertial 
sensor-based measures can assess overall gait quality, 
each measure may have its own strengths and specific 
performance characteristics. For example, the HMM-SM 
may be particularly effective for monitoring pelvic 
kinematics (or other kinematic changes for individuals 
with lower-limb difference), whereas DTW could more 
closely approximate GPS performance.

Contrary to other studies comparing TT and TF 
gait [32, 58, 59], neither the GPS nor any of the signal-
based measures (HMM-SM, MDP, and DTW) identified 
differences between the TT and TF groups. This might 
be attributed to the fact that 4 out of the 7 TF amputees 
used microprocessor knee joints, which significantly 
improve gait patterns, potentially approaching able-
bodied gait kinematics [60].

The HMM-SM was particularly effective at 
discriminating the LS group. Individuals with limb 
discrepancy often use pelvic compensatory strategies and 
display increased pelvic obliquity (i.e., left or right side 
of the hip higher than the other) [61]. This may explain 
why the pelvis configuration consistently differentiated 
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the LS group from the others, suggesting the HMM-SM 
may be more responsive to changes in pelvic kinematics 
than the GPS. It also could indicate that the HMM-SM 
is particularly effective at monitoring the compensatory 
strategies employed by individuals with limb discrepancy 
(pelvic or otherwise), as evidenced by the performance of 
both the lower leg and pelvis configurations.

Future work and limitations
This study identified significant correlations between 
the GPS and the HMM-SM as well as between the GPS 
and other inertial sensor-based methods, supporting the 
use of inertial sensors for monitoring overall gait quality. 
Furthermore, the study involved a diverse LLPU group 
from 9 to 63 years of age, comprising various prosthetic 
types—transfemoral, transtibial, Van Nes, and congenital 
limb shortening—as well as a mix of unilateral and 
bilateral LLPU. This suggests that the HMM-SM and 
other inertial signal-based measures can be applied to 
assess a wide range of gait characteristics and deviations.

However, future research should seek to address several 
study limitations. The study protocol did not allow for 
repeatability testing, as we only collected gait data during 
a single session for each participant. Among the inertial 
sensor methods evaluated, only the MGS reported 
repeatability outcomes [15]. Reliability is crucial for gait 
metrics to detect significant changes in gait patterns [62], 
so future studies should include test–retest assessments 
over multiple time periods without intervention to 
evaluate the repeatability of inertial sensor-based gait 
quality measures. It should be highlighted that the 
inertial sensor methods were validated against GPS 
using kinematics from an inertial sensor system (the 
Xsens MVN) as opposed to kinematics from an optical/
camera motion capture system. Although XSens MVN 
has been well-validated as described in the methodology, 
this could affect the results or be a source of differences 
if future studies were to use alternative methods (e.g., 
optical systems) for calculating the GPS.

Additionally, future research should attempt to 
involve larger sample sizes. While the sample size used 
for the LLPU in this study (n = 26) was comparable to 
those used in existing studies such as for the INI (n = 8) 
[10] and LLPU GPS validation (n = 20) [55], more 
comprehensive validation studies for the GGI and GPS 
involved 64 and 407 participants for the gait disability 
cohorts, respectively [7, 35]. Larger sample sizes would 
enhance our ability to assess the correlation between 
the HMM-SM and the GPS and determine if any non-
linear correlations exist. It could also enable us to assess 
correlations among the specific LLPU subgroups, which 
could reveal additional relationships not seen in the study 
or provide further evidence for correlations between 

the inertial sensor measures and the GPS. Future work 
should also continue hyperparameter testing, particularly 
for the HMM-SM, to explore the effects on correlation 
with the GPS and whether the methods from this study 
are broadly applicable to larger data sets. The HMM-SM 
exhibited more variability in performance than DTW or 
MDP among the different sensor configurations, which 
could also be indicative of overfitting by the model 
during the HMM training. Future studies should assess 
variance in the hyperparameter learning between sets 
of similar gait patterns (e.g., trials/sets of 100 gait cycles 
where gait is expected to not have changed, verified by 
similar GPS scores) to evaluate whether HMM training 
is consistent. Potential addition of regularization to the 
HMM training step or hyperparameter tuning (such as 
number of HMM states) may be necessary in the case of 
inconsistent HMM training or overfitting.

Although this study included correlation results for 
the GPS compared to parameter-based inertial sensor 
methods (INI and MGS), it did not explore correlations 
between individual parameters and the GPS. This was 
primarily due to this work’s focus on exploring the 
validity of signal-based measures, which could reduce 
the need for more complex multi-sensor systems. 
Future studies with larger sample sizes could investigate 
correlations among gait parameters, including but not 
limited to those used in INI and MGS, to determine 
whether a minimal set of gait parameters and number of 
sensors could accurately estimate the GPS. Furthermore, 
it could elucidate gait parameters which strongly 
contribute to (or are affected by) overall gait quality and 
gait kinematics.

Long-term research should also test the HMM-SM 
and other methods in more natural, free-living 
conditions, such as in environments without laboratory 
assistance or during natural walking conditions like 
on flat sidewalks. Inertial sensor-based methods are 
intended for integration into systems that clinicians and 
individuals can use during routine activities. Therefore, 
it is important to examine whether variations in sensor 
placement and orientation or less controlled walking 
conditions affect their performance.

While able-bodied gait patterns were used in this study, 
as in other studies evaluating gait quality measures [7, 10, 
35], future applications could also investigate using other 
reference sets such as high-functioning LLPU individuals 
to determine whether able-bodied gait is a relevant and 
attainable gold standard for LLPU or other disability 
populations. Finally, future studies should evaluate the 
validity of inertial sensor-based gait quality measures 
in other populations to ensure its generalizability and 
effectiveness across different disability groups.
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Conclusions
The HMM-SM, along with several other inertial sensor-
based measures, demonstrated significant correlation 
with a clinically validated measure of gait quality 
when tested on a diverse group of prosthetic users. 
This preliminary evidence suggests that the HMM-SM 
could be an effective tool for assessing gait quality. 
Additionally, results from the HMM-SM, DTW, and 
MDP indicate that overall gait quality could be assessed 
using just the signals from a small set of inertial sensors. 
These methods could offer an easily interpretable 
assessment of gait pattern deviations without requiring 
extensive parameter tuning or model training, making 
them adaptable to a wide range of gait deviations.

Given the substantial time pressures faced by 
clinicians, it is crucial to develop systems that are quick 
and easy to use to encourage their adoption in clinical 
settings. Furthermore, inertial sensor-based methods 
can enable continuous gait monitoring outside the 
clinic and support the ongoing assessment of gait 
progress and long-term changes in gait patterns.
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